SLUTRAPPORT
En effektiv digital informationshantering
Göran Samuelsson, Ann-Sofie Klareld och Erica Hellmer
Mittuniversitetet
2016
Innehåll

1. Inledning ..7
2. Resultatsammanställning ...8
 2.1. Modell för värdering och urval av information ...8
 2.2. Ledning och styrning av informationshantering i en renodlad beställarorganisation ..9
 2.3. Informationsdelning och överföring ..10
 2.4. Olika professioners perspektiv på informationshantering11
3. Analys och förslag till fortsatt arbete ..12
 Nya insikter ..13
 Nytta i Trafikverket ..14
 Möjlig framtida nytta i Trafikverket ..14
 Förslag till fortsatt forskning ..14
4. Bilagor: ..15
 Bilaga 1: Ann-Sofie Klareld (2016): Arkivbildning i en ny kontext16
 Inledning ...19
 Trafikverket och rollen som renodlad beställare ...19
 Totalentreprenad ...19
 Bakgrund ..20
 Ansvarsfördelning ..20
 Styrning ..20
 Informationsägarskap ..21
 ”Informationen har flyttat hemifrån” ..21
 Projektprocesser och informationshantering ..22
 Samhällssäkerhet och informationssäkerhet ..23
 Begreppet arkiv – en introduktion ...23
 Records ...23
 Aktuellt regelverk ..23
 Forsknings och utveckling ...24
 Problemställning ..25
 Forskningsfrågor ..25
 Studie 1 ...25
 Syfte ...25
 Metod ...25
 Resultat ..26
 Styrning ...26
 Kunskap ...26
 Rollen som myndighet ..26
 Organisatoriska gränser ...27
 Ägarskap och ansvar ..27
 Kravställning ..27
 Verksamhetssystem ..27
 Slutsatser och förslag till framtida verksamhetsutveckling27
 Studie 2 ...28
1. Inledning

- att det behövs en ökad förståelse för informationens värde och att metoder behöver utvecklas för att värdera och sedan också göra mer medvetna urval av information för ett långsiktigt bevarande.
- att det görs mycket dubbelarbete pga att man inte litar på informationens kvalitet och/eller informationen är otillräcklig.
- att den snabb teknikutveckling och nya möjligheter att hantera och bearbeta digital information kräver en ökad förståelse, kompetens och dessutom förändringar i infrastruktur.
- att Trafikverkets nya roll som renodlad beställare kommer medför ökade krav på Trafikverket att vara extra tydlig i sin kravställning på informationen. Det stod också helt klart att inrapportering från externa aktörer måste förbättras.
- att en bättre förståelse för informationens värde, en tydligare beställarroll och bättre integrerade informationsflöden kan bidra till högre kapacitet i lednings- och styrningsprocesser.
- att införande av BIM – och dess modeller också kommer kräva en tydligare strategi/modell för hur arkiv och det långsiktiga bevarande skall hanteras.

Vi föreslog också ett antal områden som det var lämpligt att fortsätta att studera och beforska. Dessa områden har till stor del legat till grund för de undersökningar som redovisas i de olika delrapporterna, vilka bifogas i som bilagor nedan. Hur olika professioner arbetar med information och hur deras perspektiv skulle kunna bidra till att med mer sammanhållande och samverkande informationsmodell redovisas i bilaga 6. Ett bidrag till hur Trafikverket bättre skall kunna knyta samman informationshanteringen med verksamhetsprocesser och fysiska infrastrukturen, här

främst via BIM, samt vad som kan göras ytterligare för att öka interoperabilitet och underlätt
överföringar och delande av information behandlas i bilaga 2 och 3. Vad Trafikverkets nya
roll som renodlad beställare innebär för informationshanteringen fördjupas i bilaga 1.
Här ingår även resonemang kring vilka behov som finns i att mer detaljerat studera vilka
förändringar och åtgärder som behövs i informationshanteringen för att stödja
Trafikverkets roll i lednings- och styrningsprocesser. Att det finns vinster att göra genom
att Trafikverket skaffar sig mer genomtänkta modeller för hur den ekonomiska
redovisningen/uppföljningen är kopplad till värdering och urval av information, där man utgår
från informationens nytta och värde för användare i både ett kort- och långsiktigt perspektiv
behandlas bland annat i bilaga 5.

2. Resultatsammanställning

I det här avsnitt har vi sammanställt våra resultat från de olika delstudierna som vi presenterar
närmare i bilagorna 1-6. Vi har valt att gruppera de under fyra olika rubriker som delvis har med
vårt uppdrag att göra och också relaterar till de områden som vi identifierade i förstudien och
som redovisades ovan.

2.1. Modell för värdering och urval av information

De senaste årens teknologiska utveckling har inneburit ökade informationsmängder, vilket
påverkar mycket på flera sätt och skapar såväl möjligheter som utmaningar. Utvecklingen
innefattar en rad olika sektorer, inte minst transportsektorn. Nya informationssteknologier för
insamling av data såsom sensorstyrda bilar innebär att volymen även fortsättningsvis kommer att
öka markant. För att kunna dra nytta av dessa nya teknologier krävs det att Trafikverket hanterar
sin information korrekt.

Värdering och urval kan göras ur ett mer traditionellt arkivperspektiv och utgå ifrån Sveriges
arkivlag, eller från mer verksamhetsnära modeller och standarder. Oavsett angreppssätt måste
värdering och urval av information alltid göras av varje enskild myndighet, med utgångspunkt från
verksamheten. Ansaret för arkivvården (gällning och bevarande) ligger alltid på myndigheten,
fram till dess att en arkivmyndighet övertar detta ansvar (Arkivlagen 9§). Modeller och standarder
som har utvecklats internationellt kan fungera som ett stöd i detta arbete.

Records Continuum Modellen (McKemmish, 2005; Upward, 1996, 1997) har utvecklats inom en
forskargrupp i Australien och bildar en kontrast till den mera klassiska livscykelmodellen. Records
Continuum Modellen illustrerar olika aspekter som är viktiga att ta hänsyn till för att helheten ska
blås bra som möjligt, exempelvis vilka metadata som behöver tillföras vid registrering för att
återanvändningen ska underlätta. Modellens fyra dimensioner: Create, Capture, Organize, och
Pluralize, jämfördes i en av studierna med det svenska regelverket, och visade sig överlappa detta
till stora delar, vilket utvecklas närmare i delrapporten. Överensstämmelserna gör att modellen kan
användas av Trafikverket för att klarlägga vilka aspekter som måste tillgodoses för att leva upp till
gällande lagkrav, samt i förlängningen utöka informationens nytta och värde genom ett proaktivt
arbetssätt.

Ett annat sätt att närma sig värdering och urval är att fråga hur Trafikverket i sin nuvarande
ekonomimodell hanterar värderingen av information. I Trafikverkets regleringsbrev för budgetåret
2015 tilldelas myndigheten pengar ur 17 olika anslagsposter. Ett detaljerat inflöde av medel, med
tillhörande krav på användning och återredovisning ställer stora krav på mottagaren att hålla

2.2. Ledning och styrning av informationshantering i en renodlad beställarorganisation

Resultatet av en fenomenografisk intervjustudie, som presenteras i bilaga 1 samt en artikel publicerad i International Journal of Information Systems (Klareld, 2016), visade att rollen som renodlad beställare hade väckt frågor kring sju olika områden:

- Styrning
- Kunskap
- Rollen som myndighet
- Organisatoriska gränser
- Ägarskap och ansvar
- Kravställning
- Verksamhetsystem

2.3. Informationsdelning och överföring

Enligt Trafikverkets Strategi för digitalisering fokuserar den verksamhetsutveckling som sker i dagssläget till stor del på förbättring av befintliga arbetssätt genom automatisering där analoga inslag kvarstår, vilket hämmar nyttjandet av digitaliseringens fulla potential. Överföring av information kan förbättras genom en översyn av de organisatoriska och budgetmässiga gränserna inom myndigheten, exempelvis mellan avdelningarna Investering och Underhåll. Idag sker överlämnande 'fysiskt' genom att flytta information mellan olika verksamhetssystem (exempelvis PPI och PPU). Det bör undersökas närmare om denna uppdelning är den mest ändamålsenliga.

Regeringen beslutade att Trafikverket, med början 2015, ska nyttja de digitala möjligheterna genom att implementera och använda BIM, byggnadsinformationsmodellering, från planering till förvaltning. Ett långsiktigt mål som Trafikverket (2014) presenterat är: "Anläggningsinformation ska med hjälp av BIM-metodik hanteras i ett livscyklerspektiv, för att information ska kunna hanteras och användas effektivt". I arbetet med BIM-metodik skall digital information kunna flytta över de organisatoriska gränserna för att kunna nyttja de möjligheter som kommer BIM.

I förstudien En effektiv informationsförvaltning beskrivs möjligheter såsom ökad effektivitet, bättre kvalitet och större engagemang med användandet av BIM. Förstudien ledde vidare till två ytterligare studier (bilaga 2-3). Den första syftade till att besvara frågan om vad som krävs för att fördelarna med BIM ska kunna förverkligas och för att säkerställa en obruten informationskedja. Metoden för att besvara frågan var semistrukturerade intervjuer i och utanför Trafikverket samt en litteraturstudie. I den senare listades fördelar med användande av BIM-metodik och hur det även ger större förståelse för hela livscyklern, en mer sammanhållna arbetsgrupp, tid- och materialbesparningar. En effektiv BIM-process för underhåll kräver att rätt och tillräcklig information har lagts in i projekteringensfasen.

Då den första studien visade att användandet av BIM ytterligare behöver utvecklas för att kunna användas i underhåll, blev målet med den andra studien att undersöka hur BIM har använts genom hela livscyklerspektivet i ett specifikt projekt. För denna studie valdes Projekt Hallandsås, med fokus på hur den information som genererats under arbetets gång levereras till förvaltning och dels att undersöka hur informationen används genom BIM-metodik i underhåll.

De resultat som framkom i den andra studien visade att trots att BIM använts i en senare fas av projektet har det gjorts vinster i tid och pengar genom bland annat analyser gällande kollisioner. Genom BIM skapades ett objektbibliotek där information samlades och modellerna gjorde att det blev lättare att samverka över teknikområden. Då Hallandsåsen inte enbart består av en förvaltare utan det är exempelvis även tunnel, järnväg, spår och signal, vilka idag är särkopplade med liten eller ingen interoperabilitet. De beskrevs som stuprör och det framkom att det borde finnas en
bättre kommunikation mellan dessa olika förvaltningssystem för att bättre kunna följa eventuell uppdatering.

Livscykelhantering av den BIM-genererade informationen är ännu ingen realitet, men för att det ska bli det så framkom det i intervjuerna att Trafikverket bör arbeta annorlunda där underhåll är med redan från början av en bygghandel. Ambitionen bör även vara att bygga ett gemensamt underhållssystem där de olika förvaltarna kan länkas samman.

För att sammanfatta de båda studierna så går det att säga att alla som är inblandade i en byggnation bör vara med och beskriva vilken information som är av vikt, även för förvaltarna. I den bästa av världar skulle förvaltning vara med i ett tidigare skede för att specificera vilken och hur mycket information de kommer att behöva för att lättare kunna förvalta en anläggning. På det sättet skulle arbetssättet hos förvaltning kunna utvecklas i takt med planering och projektering i BIM. I Trafikverket idag finns det olika förvaltningssystem med olika arbetssätt, i vissa fall med analoga inslag, vilket försämrrar interoperabilitet. Ett sätt att tillvarata de digitala möjligheterna som kommer med BIM är att öka kommunikationen mellan olika förvaltningssystem och därmed underlätta för överföring av information.

2.4. Olika professioners perspektiv på informationshantering

En mängd professioner ansvarar på olika sätt för informationshantering och förvaltning inom Trafikverket. Vi har i en studie (bilaga 6) haft fokus på hur man i olika domäner ser på information och då främst hur man hanterar värdering av informationen utifrån respektive domäns perspektiv och roll. Syftet med kartläggningsarbetet var, förutom att ge en allmän överblick det allt mer omfattande informationsarbetet inom organisationer, att se var eventuella synergieffekter och samverkansytor kan skapas för att ge förutsättningar för ett mer samlad och enhetligt informationsarbete i en organisations vardag. De domäner som har inkluderats i studien är arkiv, verksamhetsarkitektur, systemförvaltning (PM3), BIM (se bilag 6 def. s.11) och informationssäkerhet. Frågor som behandlats i studien var bland annat:

- om det görs någon kartläggning av information,
- om informationen värderas på något sätt och i så fall vad och för vilket syfte
- om man ser några eventuella samband med andra domäners verksamhet och samverkan, och
- om man kan identifiera det som är unikt och vilka utmaningar man står inför.

Resultat i studien visar att den ökande komplexiteten i informationshanteringen driver fram ett antal utmaningar som olika domänser hanterar utifrån sina uppdrag. Detta påverkar var och hur informationen hanteras och värderas i organisationen. Inom alla domäner görs någon form av kartläggning och klassificering av informationen. De syftar till olika saker och har olika angreppssätt, men alla påverkar i någon mån värderingen av information. Inom arkitektur görs en kartläggning och klassificering av informationsområden och deras avgränsning och definition, vilket är en form av värdering. I arbetet med BIM görs en struktur och klassificering samt en avgränsning av vilken information som skall levereras och hur den ska beskrivas. Det kommer också att göra att man hanterar information i olika system och processer som ska prioriteras, vilket också är en form av värdering. Inom arkivdomänen görs en kartläggning och klassificering utifrån ett riskperspektiv. I informationssäkerhetsklassningen görs en kartläggning av information och en klassning utifrån en nivå. I informationssäkerhetsklassningen skall levereras och hur man skall hantera information och eventuella risker. Det pågår samverkan främst mellan några av domänerna (arkitektur, informationssäkerhet och systemförvaltning), men arkivdomänen verkar inte vara inkluderad i
samma utsträckning i det arbetet, vilket skulle kunna ha sin grund i en organisatorisk uppdelning. Det finns ett stort värde i att intensifiera samverkan mellan de olika domänerna för att öka förståelsen och medvetenheten om varandras uppdrag och sätt att arbeta. Att identifiera och integrera varandras verktyg och modeller för att snarast skapa en mer omfattande och samverkande modell av verksamhetens informationshantering kan stärka informationsarbetet och bidra till en förstärkning av informationsförvaltningen och att information värderas högre i organisationen som en viktig resurs.

Dessa iakttagelser stöds också av våra resultat i de studier som ingår i bilaga 1 där vi kunde konstatera att även i mindre projekt så finns det en rad olika professioner på olika sätt ansvarar för informationshantering och -förvaltning inom Trafikverket. Några exempel är markförhandlare, mottagandekoordinatorer, och projektingenjörer. Utanför Trafikverkets organisatoriska gränser finns konsulter och entreprenörer som hanterar information för Trafikverkets räkning. Ett antal parallella utvecklingsinsatser pågår, där ibland begreppsmodellering, upphandling av nya verksamhetsystem och organisationsförändringar. En av studierna som har genomförts inom projektet indikerar att det finns ett behov av att diskutera och besluta vilken typ av introduktion/utbildning rörande informationshantering som behövs för olika yrkesgrupper. I dagsläget upplever bland annat markförhandlare och projektingenjörer att de har ett större ansvar för informationshantering än vad som framgår av deras arbetsbeskrivning. Trafikverket bör skapa en tydligare helhetsbild av organisationens samlade informationsresurser som en grund för fortsatt verksamhetsutveckling. Ett proaktivt arbetssätt kan underlättas genom en tätare samverkan mellan olika yrkesgrupper, exempelvis registratur, mottagande koordinator, och överlämnande koordinator. Vi kan konstatera att det finns ett stort värde i att intensifiera samverkan mellan de olika domänerna för att öka förståelsen och medvetenheten om varandras uppdrag och sätt att arbeta.

3. Analys och förslag till fortsatt arbete

Projektet har med sina delprojekt skapat en ökad förståelse för vikten av att se informationshantering och förvaltning som en helhet. Om ett livscykelperspektiv skall var möjligt att implementera måste mer resurser läggas på att proaktivt integrera alla delarna i informationsflödet. Resultatet av studierna visar att den ökade komplexiteten i informationshantering och dess förvaltning över tid driver fram ett antal utmaningar som olika verksamhetsdelar idag hanterar utifrån sina olika uppdrag. Detta medför att vi får informationsflöden som liknar ”stuprör”. Detta påverkar i sin tur var och hur informationen hanteras och värderas i organisationen. Det är uppenbart att informationsdelning och överföring mellan olika system och informationsflöden behöver effektiviseras för att uppnå digitaliseringens fulla potential. Större effektivitet kan också uppnås genom att studera hur Trafikverket strukturerar och hanterar funktioner kring ledning och styrningsfrågor som är kopplade till informationshantering och förvaltning. För att en sådan ledning och styrning skall fungera bör någon form av samlad kunskap genereras. Vi föreslår att det här arbetet bedrivs samordnat och integrerat för att skapa de bästa förutsättningarna för att sammanställa befintlig kunskap kring informationsarbetet. Detta görs lämpligen via en samordnad och integrerad modell som skapar förutsättningar att sammanställa befintlig kunskap kring informationsarbetet centrala funktioner dokumenteras och beskrivs, till exempel:

- Begrepp (definitioner).
- Benämningar (namn, synonymer, homonymer)
- Information:
- Verksamhetsregler
- Krav på information
- Informationsägare
Varje punkt bör generera någon form av sammanställning eller dokumentation som kan rubriceras i form av processbeskrivningar, klassificeringsstruktur, informationsarkitektur, säkerhetsklassning, systemdokumentation, arkivrediVisning etc. Dessa metodokument (eller sammanställningar av dessa) utgör då stommen i en sammanhållen informationsmodell. För att uppnå en effektiv livscykelhantering av behövs att i ett nästa steg slå fast vilka delar en sådan modell bör innehålla, samt hur organisationen operationellt kan följa upp och mäta hur utvecklingen i de olika parametrarna.

Nya insikter
Projektet har fungerat som en katalysator för informations- och arkivfrågorna, som under projektet kommit alltmer i förgrunden. Projektet har också påvisat utmaningar som redan genererat nya projektupplägg för ytterligare fördjupning. En sådan utmaning är studiet av ekonomi-information och dess påverkan och brist på integration i verksamhetsflödena.

Projektet och dess delrapporter har därtill underlättat möjligheterna att förankra nya projektidéer med fokus på informationskvalitet.

En ytterligare insikt som projektet har gjort är att frågorna om Trafikverkets beställarroll är många och i den fenomenografisk intervjustudie som vi redovisade för ovan kunde vi konstatera det fanns en synpunkter och förslag som kan fungera som en utgångspunkt för verksamhetsutveckling inom detta område.

Ett påtagligt resultat är att Trafikverket behöver ett tydligare proaktivt arbete där man tidigt kartlägger vilken information man kan komma att behöva för att säkerställa god kvalité på ett framtida underhållet av en anläggning. Detta är helt nödvändigt om det skall gå att realisera idén om livscykel och bättre kunna ta tillvara på digitaliseringens möjligheter. Enligt Trafikverkets ”Strategi för digitalisering” fokuserar den verksamhetsutveckling som sker i dagsläget till stor del på förbättring av befintliga arbetssätt genom automatisering, där analoga inslag kvarstår, vilket hindrar nyttjandet av digitaliseringens fulla potential. Överföring av information kan förbättras genom en översyn av de organisatoriska och budgetmässiga gränserna inom myndigheten, exempelvis mellan avdelningarna Investering och Underhåll.

Vi såg också ovan att de olika professioners perspektiv på informationshantering indikerar tydligt behovet av en större samordning kring en informationsmodell men också att behovet av en mer genomtäckt introduktion/utbildning rörande informationshantering.
Nyttta i Trafikverket

Projektet har skapat förutsättningar för att studera och beforska informationen som en tillgång/resurs och öppnat upp för mer renodlade forskningsprojekt där informationen som sådan står i centrum.

Det totala antalet intervjuer i de olika delprojekten har i sin helhet omfattat cirka 65-70 stycken. Dessa intervjuer har skapat förutsättningar för mer initierad diskussion kring hur samverkan kring informationen bör hanteras och organiseras inom Trafikverket. Genom detta projekt har också skapats resurser som bidragit till att ISERV - ett EU-projekt som finansieras med medel via Tillväxtverket, Länsstyrelsen Västernorrland och Mittuniversitet, getts förutsättningar för att under ytterligare 2,5 år arbeta vidare med frågeställningar kring framförallt Trafikverkets investoringsprojekt och informationshantering och förvaltning utan någon kostnad för Trafikverket.

Möjlig framtida nytta i Trafikverket

Projektet har skapat en utgångspunkt för formering av kravspecifikationer för ett enhetligt modellbyggande /verktyg för styrning och ledning av informationsresurser/tillgångar.

Förslag till samverkansformer och organisering kring informationshantering/förvaltning.

Kunskap och förmåga att i samverkan med akademin för att söka externa medel för FOI.

Förslag till fortsatt forskning

Referenser

4. Bilagor:

2. Erica Hellmer (2015): BIM i ett långtidsperspektiv - att nyttja de digitala möjligheterna från projektering till förvaltning
Bilaga 1: Ann-Sofie Klareld (2016):
Arkivbildning i en ny kontext
Innehåll

Inledning 19
 Trafikverket och rollen som renodlad beställare 19
 Totalentreprenad 19
 Bakgrund 20
 Ansvarsfördelning 20
 Styrning 20
 Informationsägarskap 21
 "Informationen har flyttat hemifrån" 21
 Projektprocesser och informationshantering 22
 Samhällssäkerhet och informationssäkerhet 23

Begreppet arkiv – en introduktion 23
 Records 23
 Aktuellt regelverk 23
 Forskning och utveckling 24

Problemställning 25
 Forskningsfrågor 25

Studie 1 25
 Syfte 25
 Metod 25
 Resultat 26
 Styrning 26
 Kunskap 26
 RolLEN som myndighet 26
 Organisatoriska gränser 27
 Ägarskap och ansvar 27
 Kravställning 27
 Verksamhetssystem 27
 Slutsatser och förslag till framtida verksamhetsutveckling 27

Studie 2 28
 Syfte 28
 Metod 29

Resultat 31
 Create 31
 Capture 32
 Organize 33
 Pluralize 33
 Slutsatser och förslag till framtida verksamhetsutveckling 34
 Internationell utveckling 34
Inledning

Trafikverket och rollen som renodlad beställare

Trafikverket är en myndighet under Näringsdepartementet med ansvar för ”(…) den långsiktiga infrastrukturplaneringen för vägtrafik, järnvägstrafik, sjöfart och luftfart samt för byggande och drift av statliga vägar och järnvägar” (SFS, 2010:185). Sedan starten 2010 har Trafikverket på regeringens uppdrag drivit ett förändringsarbete som syftar till en roll som renodlad beställare (Trafikverket, 2014a). Initiativet har skapat flera frågeställningar kring informationshantering. Enligt ’A’ rör det sig främst om tre huvudpunkter:

• Ansvarsfördelning
• Styrning
• Informationsägarskap

Målet med en renodlad beställarroll är ”(…) att få mer nytta för pengarna genom en ökad produktivitet, innovationsgrad och konkurrens i anläggningsbranschen” (Trafikverket, 2011, 2014b). En Beställar- och upphandlarstrategi är fastställd av GD och anger övergripande förhållningssätt för hur beställningar ska göras. En Leverantörsmarknadsplan har också tagits fram, som ett sätt att få marknadens aktörer att bidra till att Trafikverket når sina mål.

Totalentreprenad

Bakgrund

Ansvarsfördelning

Enligt leverantörsmarknadsplanen finns det önskemål från leverantörerna om att förbättra tillgänglighet och tillförlitlighet gällande information om aktuella och planerade upphandlingar. Detta beskrivs emellertid som en kommunikationsfråga (Trafikverket, 2014b).

Styrning

Informationsägarskap

I vissa fall har entreprenörer behållit information som Trafikverket har ansvar för. Trots att det ofta är tydligt reglerat vilken information som ska levereras finns det risk för att vissa delar hamnar mellan stolarna. Viss typ av information, såsom relationshandlingar, levereras alltid in enligt ’A’, men exempelvis en geoteknisk undersökning, som beställaren kanske inte ens visste om att den utfördes, kan mycket väl glömmas bort.

"Informationen har flyttat hemifrån"

Enligt ’A’ finns tre typer av information:

2. **Projektinformation**

3. **JK-ärenden** (riktade mot privatpersoner): plan, tillstånd, utredningar, etc.

Externa lösningar

Projektprocessor och informationshantering

Funktionellt ansvaret är inköp och logistik. (Sakområdena är inga processer utan kan beskrivas som övergripande lagkrav.)

Ett konkret exempel på vilka utmaningar roller som renodlad beställare innehär var vid ett tillfälle då det hade förekommit klotter och skadegörelse i cykeltunnlar i Malmö. Informationen om hur skadorna såg ut tillhörde formellt sett Trafikverket men fanns fysiskt hos en underentreprenör. Detta gjorde att myndigheten inte kunde lämna ut sin egen information till SVT vid förfrågan.

Ytterligare ett exempel är projektet Förbifart Stockholm där en kontrollansvarig skötte byggloven åt projektledarna. De hade inte tillgång till sina egna ärenden vilket försvärade hanteringen. Dolda kostnader och dolda problem har blivit följden av att informationshanteringsfrågorna inte adresserats.
Samhällssäkerhet och informationssäkerhet

Begreppet arkiv – en introduktion

Arkiv- och informationsvetenskap definieras vid Mittuniversitetet som: "Arkivinformationen och arkivens uppkomst, hantering, organisering och användningsområde, samt dess påverkan och betydelse för organisationer, individer och samhälle"². Arkivinformation kan översättas med engelskans record.

Records

Enligt ISO 15489 – standard för dokumenthantering är en record "information created, received, and maintained as evidence and as an asset by an organization or person, in pursuit of legal obligations or in the transaction of business" (ISO 15489-1, 2016). Records skall ha vissa kvaliteter:

- **Autenticitet** – records är vad de utger sig för att vara, har skapats/skickats av den person som utgett sig för detta samt har skapats vid den tidpunkt som angetts.
- **Tillförlitlighet** – innehållet representerar vad som faktiskt dokumenteras (dvs. inte en förvanskning av vad som skedde, beslutades etc.).
- **Integritet** – en record är fullständig och har inte ändrats, samt är skyddad mot obehörig förändring.
- **Användbarhet** – records kan lokaliseras, tas fram, presenteras och tolkas. Såväl arkiv- och informationsvetenskapen som den praktiska arkivverksamheten ser som en viktig uppgift att upprätthålla dessa kvaliteter, och en viktig del är att utveckla metoder, tekniker och processer för detta.

Aktuellt regelverk

Det svenska arkivbegreppet brukar beskrivas som 'holistiskt' eftersom det inte görs någon formell åtskillnad mellan administrativa handlingar och arkiv. Istället omfattas hela 'kedjan' från det att informationen skapas och vidare mot långtidsbevarande. Oavsett var en handling befinner sig, fysiskt eller administrativt, hos myndighet eller arkivmyndighet, ska den hanteras med det långsiktiga bevarandet i åtanke. De viktigaste lagarna som styr arkivbildningen och hanteringen av

allmänna handlingar hos statliga myndigheter är:

- **Tryckfrihetsförordningen 2 kap** – grundlagsfast rätt till allmänna handlingar
- **Arkivlagen** – grundläggande bestämmelser om arkiv och arkivvård hos offentliga myndigheter (både stat, kommun och landsting) Arkivförordningen kompletterar
- **Offentlighets- och sekretesslagen** – reglerar sekretess och restriktioner i åtkomst till allmänna handlingar
- **Personuppgiftslagen** – reglerar hantering av personuppgifter
- **Förvaltningslagen** – myndighetens hantering av ärenden och uppdrag

Tryckfrihetsförordningen anger att ”Till främjande av ett fritt meningsutbyte och en allsidig upplysning skall varje svensk medborgare ha rätt att taga del av allmänna handlingar”. En handling är en ”framställning i skrift eller bild samt upptagning som kan läsas, avlyssnas eller på annat sätt uppfattas endast med tekniskt hjälpmedel”, och en **allmän handling** en handling som förvaras hos myndighet och är att anse som inkommen till eller upprättad hos myndighet. Av dessa allmänna handlingar så är en del offentliga och en del sekretessbelagda.

Enligt Offentlighets- och sekretesslagen ska allmänna handlingar registeras så snart de har kommit in till eller upprättats hos en myndighet med:

1. datum då handlingen kom in eller upprättades,
2. diarienummer eller annan beteckning handlingen fått vid registreringen,
3. i förekommande fall uppgifter om handlingens avsändare eller mottagare, och
4. i kortfattad handlingen rör.

Anledningen till att de ska registreras är för att underlätta återsökningen så att offentlighetsprincipen ska upprätthållas.

Arkivlagen är en så kallad **ramlag**, och en viktig följdförfattning till tryckfrihetsförordningen. En ramlag innehåller grundläggande värderingar, helhetsprinciper och riktlinjer, där lagstiftermen uppställer mål och i mindre utsträckning detaljreglerar vad som ska göras. Detta ger frihet och flexibilitet att anpassa sig efter skiftande omständigheter och ett överlåtande att ta beslut till experter på enskilda områden. Lagen innehåller de övergripande reglerna om arkivverksamheten hos myndigheterna, vilka handlingar som skall arkiveras, arkivvård, förhållandet mellan myndighet och arkivmyndighet, med mera.

Forskning och utveckling

”För att kunna vara i stånd att lösa några av de problem, gallring, beständighet, förtecknande m.m. som möter arkivarierna nu, torde krivas att man aktivt deltager i arbetet med utvecklingen av nya system” (Gränström, 1979, s. 61).
En liknande ambition har senare uttryckts av Riksarkivet:

"Riksarkivets strävan är vidare att delta redan från början i systemutvecklingsprocessen när myndigheterna utformar sina IT-system och på så sätt tillgodose arkivkraven på systemen" (Riksarkivet, 2006, s. 8).

Problemställning

Organisationsförändringen mot att bli en renodlad beställarorganisation har skapat flera frågor kring informationshantering och arkivbildning. Exempelvis rörande ansvarsfördelning, styrning och informationsägarskap. I och med övergången till renodlad beställare skapas och hanteras handlingar av externa parter. Kravställning blir viktig. Vad ska utföras av Trafikverket, vad kan utföras av konsulter och entreprenörer?

Forskningsfrågor

De forskningsfrågor som detta delprojekt har arbetat med är:

1. Vad innebär Trafikverkets nya roll som renodlad beställare för informationshanteringen?
2. Vilka förändringar och åtgärder behövs i informationshanteringen för att stödja Trafikverkets roll i lednings- och styrningsprocesser?

Forskningsfrågorna har adresserats genom tre studier, vilka resulterat i tre vetenskapliga artiklar. Artiklarna, som är skrivna på engelska, sammanfattas på svenska nedan.

Studie 1

Traditionellt har allmänna handlingar hanterats och bevarats av varje myndighet separat. Gällande lagar och regler utgår också från detta. Men digitaliseringen av arbetsprocesser i kombination med nya sätt att arbeta skapar en mer komplex arkivbilning. Vad det här innebär i praktiken kan diskuteras.

Syfte

Metod

Fenomenografi är en kvalitativ forskningsmetod som har utvecklats inom pedagogik, och har som syfte att fånga variation i uppfattningar av ett specifikt fenomen och ge en bild av vilka möjliga tolkningar som kan göras (Limberg, (2008); Marton, (1981); Mathison, (2005); Åkerlind, 2010).
Gruppen är i fokus, inte individerna, vilket gör att resultatet kan sägas ge en inblick i det ’kollektiva medvetandet’: resultatet ska alltså inte tolkas som motsatser utan uttryck för skiftande perspektiv.

15 personer intervjuades, dels på grund av att det är ungefär så många som en fenomenografisk studie brukar använda sig av och dels på grund av de tidsramar som stod till förfogande. Intervjuerna var semistrukturerade och varade i genomsnitt 45 minuter. Samtliga intervjuer spelades in och transkriberades före analys.

Resultat

Resultatet visade att rollen som renodlad beställare väckte frågor kring sju olika områden:

1. Styrning
2. Kunskap
3. Rollen som myndighet
4. Organisatoriska gränser
5. Ägarskap och ansvar
6. Kravställning
7. Verksamhetssystem

Styrning

Strategier och strategiska beslut beskrivs som viktiga för att skapa tillfredsställande kontroll och koordinering. Styrning av information och arkivbildning framhölls som en viktig sak att diskutera i relation till övergången till en renodlad beställarorganisation. En av intervjupersonerna beskrev det som att informationen hade ”flyttat hemifrån” men att det inte hade gjorts på ett välorganiserat sätt. Kontroll och struktur ansågs viktigt eftersom information nu skulle komma att skapas av fler aktörer än tidigare.

Kunskap

Rollen som myndighet

Organisatoriska gränser

Ägarskap och ansvar

Att etablera ägarskap och ansvar för handlingar som skapas av konsulter & entreprenörer beskrevs som en komplex frågeställning. Ansvaret kan delas upp exempelvis i systemägare, processägare, administratör. Överlämnande av ägarskap kan ske såväl ’fysiskt’ som ’logiskt’, det vill säga inom ett och samma system. Och vem äger då ansvaret för informationen och arkivbildningen? En av intervjuersonerna beskrev det som att information ”föds” på Planering, sedan överförs informationen till Investering där den förädlas, därefter ska den överföras till Underhåll. Ändå är Trafikverket som myndighet ansvarig och äger informationen genom hela ’kedjan’ eller ’flödet’.

Kravställning

Hur ska kraven gällande informationshantering och arkivbildning formuleras i avtal?

Hantering kan dels detaljregleras under projektets gång, och dels ske först vid inleverans. Tydlighet efterfrågades men det ansågs oklart vem som var lämplig att kontakta när kraven skulle ”sättas på pränt”.

Verksamhetssystem

Vilka verksamhetssystem som ska användas, Trafikverkets eller entreprenörens, var en fråga där det fanns tydligt olika uppfattningar inom urvalsgruppen. Exempel på frågor som ansågs viktiga att diskutera var: Ska krav ställas på att konsulter & entreprenörer alltid använder Trafikverkets system?; Ska kraven i annat fall precisera vilka system konsulter & entreprenören ska använda?; Finns det kompetens inom Trafikverket att avgöra detta eller är det bättre att överlåta detta avgörande externt?; Hur många verksamhetssystem ska Trafikverket inneha?

Slutsatser och förslag till framtida verksamhetsutveckling

Resultatet visar att det finns en hel del att diskutera och fatta beslut om Olika argument, åsikter, och kompetenser har kommit till tals i studien. De sju områden som identifierats kan utgöra en början till verksamhetsutveckling. Att lyfta dessa frågor kan bidra till ett effektivare och mer enhetligt Trafikverk.

En mer omfattande redogörelse för studien finns publicerad i International Journal of Public Information Systems ”The information has moved away from home” Conceptions about how an outsourcing policy affects records management http://www.ijpis.net/ojs/index.php/IJPIS
Studie 2

Den andra studien hade som mål att att bidra till att besvara båda frågeställningarna (RQ1: Vad innebär Trafikverkets nya roll som renodlad beställare för informationshanteringen? och RQ2: Vilka förändringar och åtgärder behövs i informationshanteringen för att stödja Trafikverkets roll i lednings- och styrningsprocesser?)

Syfte

Syftet med studien var att följa informationshanteringen i ett investeringsprojekt och på så sätt skapa en överblick över var i utförandefasen i ett investeringsprojekt utmaningarna finns.

Studien tog sikte på utförandefasen, eftersom det är där infrastrukturen byggs och konsulter och entreprenörer samarbetar med Trafikverket för att dokumentera vad som sker. Det är också en fas som man från centralt håll har mindre kunskap om.

![Investeringsprocessen](image)

Investeringsprojektets målsättningar var: "(...) att genomföra kostnadseffektiva åtgärder för att höja trafiksäkerheten samt öka tillgängligheten. Om fler väljer att promenera och cykla istället för att åka bil leder det till förbättrad miljö och hälsa i området" (Projektspecifikation 2010-10-14, version 0.9).

Dessa mål är i sig inte kopplade till arkiv, men arkiv används och bildas i och med byggandet: Trafikverket är beroende av handlingar för att planera, upphandla, göra kostnadskalkyler, upprätta avtal med markägare längs sträckan, få reda på vad som har gjorts längs sträckan tidigare och varför, samt dokumentera förändringar som sker till följd av det pågående projektet, och vilka skäl det finns för beslut som fattas, för att nämna några exempel.
Metod

![Records Continuum Modellen](source: © Frank Upward, all rights reserved)

Figur 2. Records Continuum Modellen

Den förenklade versionen visar de fyra dimensionerna av modellen: Create, Capture, Organize, och Pluralize. Modellen vill visa olika aspekter som är viktiga att ta hänsyn till för att helheten ska bli så bra som möjligt, exempelvis vilka metadata som behöver tillföras vid registrering för att återanvändningen ska underlättas. RCM är tänkt som en kontrast finns den mera klassiska livscykelmodellen (Figur 4).
Detta är sätt vi kanske vanligtvis tänker när det gäller arkivbildningen, och även i praktiken det sätt som ansvaret fördelas. Oavsett modell är emellertid idealet att redan vid systemdesignen, det vill säga innan några handlingar skapas, planera för gällning och bevarande. RCM är designad som ett dynamiskt och aktivt redskap, ett sätt att utvärdera, förstå och även utveckla recordkeeping (Cumming 2010, p. 48)

<table>
<thead>
<tr>
<th>Create.</th>
<th>Myndigheter ska använda materiel och metoder som är lämpliga med hänsyn till behovet av arkivbeständighet. (Arkivlagen 5§)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create. Den första dimensionen representerar den tid eller plats där en händelse äger rum och en handling skapas.</td>
<td>Capture. I den andra dimensionen blir handlingen en del av en händelsekedja och får status som bevis.</td>
</tr>
<tr>
<td>Capture.</td>
<td>Registrering</td>
</tr>
<tr>
<td>1. datum</td>
<td>2. diarienummer eller annan beteckning</td>
</tr>
<tr>
<td>3. avsändare / mottagare,</td>
<td>4. vad handlingen rör</td>
</tr>
<tr>
<td>(Offentlighets- och sekretesslagen 1-2 §§).</td>
<td></td>
</tr>
<tr>
<td>Organize. Den tredje dimensionen visar hur handlingen blir del av ett arkiv.</td>
<td>Myndigheters arkiv ska organiseras och en systematisk arkivbeskrivning upprättas, så att rätten att ta del av allmänna handlingar underlättas (Arkivlagen 6 §).</td>
</tr>
<tr>
<td>Pluralize. Den fjärde och sista dimensionen representerar den övergripande sociala kontext som en handling används inom.</td>
<td>Pluralize. Medborgare har rätt att ta del av allmänna handlingar (Tryckfrihetsförordningen 1 §). Myndigheters arkiv är del av det nationella kulturarvet (Arkivlagen 10 §).</td>
</tr>
</tbody>
</table>

Tabell 1. Likheter mellan RCM och svensk lagstiftning.

Resultat

Create

Lagstiftningen gäller handlingar som skapas inom en myndighet. Handlingar som skapas externt

Ett exempel på problematik som kan uppstå vid skapandet är att vid ett tillfälle skedde ett tillbud i form av en smitningsolycka. Då ingick det i platschefes arbetsuppgifter att anmäla detta till Polisen, till Arbetsmiljöverket i deras system, och en rapport i företagets verksamhetssystem. Den senare rapporten skrivs sedan ut och vidarebefordras till Trafikverket där den ska skrivas in manuellt i samma system. En oväntad händelse skapade i detta fallet mycket extraarbete. Kanske finns det tekniska möjligheter att underlätta denna process?

Ett ytterligare exempel på en problematik som framkom vid intervjuerna var att introduktionsutbildning upplevdes saknas. Istället hade personer lärt sig av kollegor och genom egna misstag. Denna del av arbetet sades också saknas i arbetsbeskrivningen för exempelvis projektingenjörer vilket gjorde att det upplevdes som en extra pålaga som inte var förväntad. Problematiken kring utbildning bildade grund för fokus och genomförande av Studie III.

Capture

Ett problem som uppkommer när det gäller rollen som renodlad beställare är om handlingar från entreprenörer ska betraktas som inkomna eller upprättade. Om de betraktas som upprättade är det enklare att ställa krav med stöd av lagen gällande format och hantering. Om de betraktas som inkomna finns inte samma möjligheter. Då behövs tydligare instruktioner i avtalén.
Organize

De personer jag intervjuade upplevde att det var svårt att få en överblick över hur handlingar skulle organiseras för att uppfylla behoven hos Trafikverket som helhet, bland annat eftersom avdelningarna Investering och Underhåll upplevdes ha väldigt olika behov. Enligt mottagandekoordinatorn förekom det alltid diskussioner vid leverans från PPI till PPU (Projektportalen Underhåll) om vilken information som skulle föras över. Projektledare har en viss frihet i att organisera filstrukturen i PPI efter varje projekt. Detta upplevdes som försvarande för entreprenörer som arbetade med flera projekt eftersom de inte såg en likhet, men däremot sågs som positivt av projektledaren eftersom filstrukturen kunde anpassas efter aktuella behov.

Pluralize

Hanteringen av handlingar för att underlätta 'pluralisation' har med tillgänglighet och sekretess att göra. Även om allmänna handlingar som regel är offentliga så finns det undantag och det kan vara av olika skäl. I det aktuella fallet var det en av intervjunpersonerna som tog upp att om någon i byn skulle vara emot cykelvägen så är det potentiellt känslig information som inte bör komma ut. Andra exempel är om det finns hotade djurarter i området eller i stadsmiljö om det finns tunnlar på området.
Slutsatser och förslag till framtida verksamhetsutveckling

Records Continuum Modellen kan förslagsvis användas som utgångspunkt / referensram i framtida verksamhetsutveckling som ett sätt att kontrollera efterlevnaden av aktuella lagar:
handlingar ska skapas, internt eller externt, (create); de ska ’fångas in’ (capture); bli en del av Trafikverkets arkiv (organize); samt kunna återfinnas & användas internt & externt över tid (pluralize). Handlingar som skapas till följd av ett investeringsprojekt ska tillföras Trafikverkets arkiv och kunna kopplas till andra handlingar, exempelvis rörande samma plats, eller samma typ av åtgärd.

En artikel med titeln “Recordkeeping and archives creation in an outsourcing public agency” har skickats till Records Management Journal och granskning av artikeln pågår.

Internationell utveckling

Studie 3

Cirka 30 intervjuer genomfördes under projekttiden. Ett längre utdrag har här valts ut som inledning till den tredje och sista studien för att belysa en problematik som myndighetens anställda regelbundet ställs inför, samt återge några vanligt förekommande tankar om hur framtiden kan tänkas komma att se ut.
Utdrag från intervju

(... idag så ligger vi ju inne i en datoriserad verklighet. Men, det här som har skett fram till nu egentligen, det är, ja väldigt mycket sitter i huvudet på folk, alternativt i en pärm någonstans och så finns det ingen möjlighet att hitta de svaren. Och det kan betyda då att vi alltså får betala en gång till för samma sak som vi en gång i tiden har löst. Bara för att vi inte har papper som styrker det hela.

Har du något konkret exempel på det?

Mhm. Menar du att det var ren tur att ni hittade den där?

Ja.

(...)

Ok. Hur blir det, blir det någon process av det eller vad slutar det i?

Mhm. Är det ofta det händer att ni får kontakta Landsarkivet för att hitta information?

Ja om man säger 2016 så har jag sökt kontakt med dem ca 10 gånger.

[...]

På en fastighetsbeteckning så ska man lätt kunna få fatt i: vad finns det för avtal, vad finns det för belastning på den här fastigheten? Och det är inte alldeles enkelt, som det är idag. Och jag tjatar ju på mina, eller de som jag kommer i kontakt med... Man får ju hoppas att det sprider sig, så det blir lättare och lättare att hitta saker och ting.

(...)

35
Man ska inte behöva använda statliga medel för att göra om och göra om och göra om. Bara för att man inte har någon lättillgänglig dokumentation och läsmöjlighet.

Är det din upplevelse att den dokumentationen som görs nu, att den kommer att vara lättare att hitta i framtiden? Eller att det blir bättre kvalitet på informationen?

Ja. Det vill jag säga, absolut.

Vad är de största skillnaderna där?

(...)

Tror du att det kommer att bli en bättre, vad ska man säga, att de som kommer nya ny kommer att kunna hitta lättare utan att behöva ha den här bakgrundskunskapen som du har?

Utbildning eller automatisering?

Intervjuutdraget illustrerar någonting som flera personer inom Trafikverket har uttryckt, nämligen tanken att just nu är arkivbildning och återsökning både krångligt, tidskrävande, och i flera fall personbundet, men i framtiden kommer det att underlätta genom automatisering och utveckling av nya system. Behovet av utbildning anses därmed minska. Samtidigt framhåller många, i likhet med intervjuupersonen här, att det i nuläget saknas formell introduktionsutbildning, såväl gällande övergripande regelverk som för specifika processer. I korthet kan sägas att alla är överens om att utveckling behövs, men hur den konkret bör se ut kan diskuteras: skall främsta fokus ligga på utbildning, på automatiserings eller en kombination? Vilken typ av utbildning behövs och för vem? Hur kan Trafikverket se till att digitaliserings möjligheter inte reduceras till en automatisering av befintliga arbetsprocesser utan även tillför ytterligare mervärde(n)?

Den typ av handlingar intervjuupersonen talar om är vägrättsavtal – juridiska handlingar som är giltiga tills nyt avtal upprättas, och alltså kan vara ’aktuella’ under mycket lång tid. Avtalet har ett tydligt ekonomiskt värde eftersom de reglerar Trafikverkets ansvar gentemot fastighetsägare. Avtalet finns både hos Trafikverket och hos Riksarkivet (Landsarkivet) men upplevs ibland vara svåra att återfinna, varför intervjuupersonen misstänker att det finns ett stort ’mörkertal’ av
anställda som helt enkelt inte har tid eller kunskaper för att söka fram dem. Vad gäller frågan om hur de avtal som skapas nu ska bevaras för framtiden, så uppgör intervjupersonen att hen försöker 'lära upp' nya kollegor kring hur de ska hanteras på rätt sätt för att bli sökbara, trots att detta inte tillhör hens arbetsuppgifter. Denna typ av personbunden kunskap men intervjupersonen tror att nya system och sökmöjligheter till stor del kommer att ersätta behovet av utbildning framöver.

Syfte

Metod
Diskursanalys valdes som en lämplig metod för att närmare undersöka hur behovet av utbildning respektive automatisering beskrivs och hanteras, och därmed bidra till fördjupad kunskap kring behoven av verksamhetsutveckling. En diskurs kan beskrivas som ett sätt att tala om och förstå världen (Winther Jørgensen, Phillips, & Torhell, 2000). Ett exempel är när vi talar i metaforer, som när en intervjuperson uttrykte: 'informationshantering, det är som ett träska som man kan dras ner och fastna i'. Denna typ av 'mentala bilder' reflekterar och påverkar synsätt och förväntningar. I en organisation vars uttalade mål är att information skall ses som en resurs och som i sin digitaliseringsstrategi framhåller att ”Organisationskulturen har stor betydelse för hur väl digitaliseringens möjligheter kan tas om hand”, samt att ”I framgångsrika organisationer stödjer och legitimerar strukturen och kulturen varandra”, blir det viktigt att uppmärksamma hur medarbetarna tänker kring behovet av olika typer av utvecklingsinsatser.

Resultat
Flera intervjupersoner och workshopdeltagare ansåg att ett bra verksamhetsystem kan ersätta vissa kunskaper som medarbetarna behöver idag och att verksamheten därmed kan effektiviseras. Emellertid ansåg flertalet även att de generella kunskaperna kring informationshantering idag var bristfällig, vilket riskerade att göra denna del av verksamheten mindre effektiv. De två perspektiven (utbildning och automatisering) tenderade att lyftas fram var för sig, vilket i förlängningen kan komma att ge konsekvenser för arkivbildningen.

Enligt Principer för allmänna handlingar (TDOK 2015:0173) är en viss kunskap kring informationshantering nödvändig inom Trafikverket som helhet: "För att vi ska kunna
upprätthålla en god e-förvaltning krävs att alla anställda är införstådda med de krav och regler som gäller för att hantera allmänna handlingar”. Efterlevandet av denna målbild försvåras i dagsläget av att det saknas en obligatorisk grundläggande introduktion till hur allmänna handlingar skall hanteras. Den funktion som starkast förknippas med hanteringen av allmänna handlingar är diariet, men trots att majoriteten av medarbetarna har förtroende för att diariefunktionen har kunskaper kring hanteringen av allmänna handlingar så ser många en diskrepans mellan diarium/arkiv å ena sidan och kärnverksamheten å andra sidan. ”Diariet har inte utvecklats för verksamheten” var en vanlig åsikt som framkom i flera intervjuer. Tendensen att uppfatta informationshantering som en 'administrativ börda’ snarare än en naturlig och viktig del av kärnverksamheten kan uppfattas som ett tecken på att det finns ett behov av tydligare ledning och styrning kring vad Trafikverkets kärnverksamhet innefattar. En intervjuperson sammanfattar denna problematik på detta sätt: ”Vi har ju tyvärr till viss del en skev världsbild på insidan i Trafikverket där vi fortfarande tror att det är vi som är ute och jobbar med vägen och järnvägen men så är det ju inte, det är ju andra som gör det.” Med andra ord har sättet att organisera verksamheten förändrats i och med att Trafikverket bildades. I och med rollen som renodlad beställare blir myndighetens roll att upphandla och kontrollera snarare än att bygga och förvalta infrastrukturen. Det gör att existerande processer kan behöva modifieras. Enligt digitaliseringsstrategin är det viktigt att ’lyfta blicken’ och inte stirra sig blind på hur olika arbetsmoment utförs just nu: ”Den verksamhetsutveckling som sker har till stor del fokus på förbättring av befintliga arbetssätt och automatisering med hjälp av IT, där vi har kvar analoga inslag och därmed inte nyttjar digitaliseringens fulla potential ännu”.

Flera intervjupersoner har sagt att utbildning är viktigt, men att det saknas tydliga kommunikationsvägar. Vad en rimlig kunskapsnivå innebär kan diskuteras. Vid en workshop med fokus på ärendehantering beskrivs att behovet av kunskap delvis kan ’byggas bort’ genom att implementera effektivare verksamhetsystem: “(...) det ska vara lätt att göra rätt är vårt mantra. Och om man liksom integrerar det här och, om man inte behöver veta så mycket, alltså den enskilda användaren behöver inte tänka så mycket på informationshantering (...) han eller hon löser sin uppgift inom planering av infrastruktur, förvaltning eller trafikledning, och sen så sköter vår systemlogik det där andra. Lite så tänker vi” (Workshop 2015-11-13)

En ganska vanlig syn på arkivbildningen är att det rör sig om en extra arbetsuppgift som ligger lite utanför den egentliga verksamheten. Det synsättet kan behöva förändras i samband med övergången till renodlad beställare eftersom organisationens kärnverksamhet inte lägre är att bygga och underhålla infrastrukturen utan att se till så att den blir byggd och underhållen.

Slutsats och förslag till framtida verksamhetsutveckling

Kommunikationen kring frågor som rör informationsförvaltning kan förbättras genom en tydligare målbild och fokus i lednings- och styrningsprocesser rörande detta verksamhetsområde. Både utbildung som automatisering är nödvändiga komponenter för att säkerställa en effektiv digital informationsförvaltning.

Kanske behöver ansvarsområdet lyftas in i arbetsbeskrivningen hos fler yrkesgrupper i och med övergången till renodlad beställare?

En artikel med titeln “Who needs to know about good digital recordkeeping? Comparing two discourses on digital public recordkeeping and archives creation, and their implications for business development” håller på att färdigställas och kommer att skickas till en peer review journal.
Referenser

RIKSARKIVET (2006). ATT BEVARA DIGITALA HANDLINGAR FÖRSLAG TILL FRAMTIDA INRIKTNING AV GÖRAN KRISTANSSON.

SFS (1971:948) VÄGLAG.

SFS (2004:519) JÄRNVÄGLAG

TRAFIKVERKET (2010) FÖRORDNING (2010:185) MED INSTRUKTION FÖR TRAFIKVERKET.

TRAFIKVERKET (2011) TDOK 2011:196 BESTÄLLAR- OCH UPPHANDLARSTRATEGI.

TRAFIKVERKET (2014A). SNABBASTE VÄGEN TILL ÖKAD PRODUKTIVITET I ANLÄGGNINGSBRANSCHEN.

Bilaga 2: Erica Hellmer (2015): BIM i ett långtidsperspektiv - att nyttja de digitala möjligheterna från projektering till förvaltning
Innehåll

<table>
<thead>
<tr>
<th>Abstract/sammanfattning</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inledning</td>
<td>43</td>
</tr>
<tr>
<td>Bakgrund</td>
<td>44</td>
</tr>
<tr>
<td>Syfte</td>
<td>45</td>
</tr>
<tr>
<td>Disposition</td>
<td>46</td>
</tr>
<tr>
<td>Metod</td>
<td>46</td>
</tr>
<tr>
<td>Litteraturstudie</td>
<td>46</td>
</tr>
<tr>
<td>BIM i Trafikverket</td>
<td>48</td>
</tr>
<tr>
<td>Byggnadsinformationsmodellering - BIM</td>
<td>48</td>
</tr>
<tr>
<td>Från planering till förvaltning - Fokus på informationen</td>
<td>49</td>
</tr>
<tr>
<td>Arkivering av digital information</td>
<td>49</td>
</tr>
<tr>
<td>Standardisering</td>
<td>50</td>
</tr>
<tr>
<td>Sammanfattning av intervjuer</td>
<td>50</td>
</tr>
<tr>
<td>Intervjuer</td>
<td>50</td>
</tr>
<tr>
<td>BIM idag</td>
<td>50</td>
</tr>
<tr>
<td>Möjligheterna med BIM</td>
<td>51</td>
</tr>
<tr>
<td>Nackdelar</td>
<td>51</td>
</tr>
<tr>
<td>Information till förvaltning och underhåll</td>
<td>52</td>
</tr>
<tr>
<td>Lagring av information från BIM-modell</td>
<td>53</td>
</tr>
<tr>
<td>Krav på information</td>
<td>53</td>
</tr>
<tr>
<td>Standardisering</td>
<td>56</td>
</tr>
<tr>
<td>Analys och diskussion</td>
<td>56</td>
</tr>
<tr>
<td>Att nyttja de digitala möjligheterna</td>
<td>56</td>
</tr>
<tr>
<td>Utmaningar och behovet av arkivering</td>
<td>56</td>
</tr>
<tr>
<td>BIM – Att nå nivå 3</td>
<td>58</td>
</tr>
<tr>
<td>BIM i ett arkivvetenskapligt perspektiv</td>
<td>59</td>
</tr>
<tr>
<td>Förvaltning av BIM-relaterad information utanför Trafikverket</td>
<td>60</td>
</tr>
<tr>
<td>Referenser</td>
<td>60</td>
</tr>
<tr>
<td>Figurförteckning</td>
<td>61</td>
</tr>
<tr>
<td>Bilaga 2.1. Intervjufrågor</td>
<td>62</td>
</tr>
</tbody>
</table>
Abstract/sammanfattning

Allt fler branscher använder sig av byggnadsinformationsmodellering (BIM), visuell 3D-modell och process för att planera, projektera och förvalta olika former av anläggningar. Genom att gå från ritningar till 3D-baserad teknik beskrivs fördelarna bland annat vara mer samordnade processer genom förbättrad kommunikation, snabbare riskanalyser och bättre anläggningshantering.

Från och med 2015 så ställer Trafikverket krav på användning av BIM, vilket innebär att nyttja de digitala möjligheter som kommer med ett införande och användande av BIM.

Syftet med denna delstudie har varit att undersöka hur fördelarna med BIM kan förverkligas, om man idag vet vilken och hur mycket information som behövs för behålla en obruten informationskedja. Då Trafikverkets anläggningar i många fall har lång livslängd så behöver den information som genererats i en BIM-process, det vill säga från planering och projektering, även kunna vara tillgänglig och användbar i ett långtidsperspektiv.

Metoden för delstudien har varit dels en litteraturstudie och dels intervjuer. Intervjuerna gjordes med tre anställda från Trafikverket och två anställda vid olika svenska företag utanför Trafikverket. Dessa två företag arbetar sedan en tid tillbaka med användandet av BIM och syftet med att blicka utanför Trafikverket var att se hur dessa gör för att fånga tillräcklig och korrekt information från en BIM-process.

Vid litteratursökningen söktes främst litteratur som rörde BIM och förvaltning/underhåll men även litteratur som rörde digital dokumenthantering. De resultat som framkom utifrån litteraturstudien var att det idag publiceras en hel del artiklar som rör BIM och Facility Management, det vill säga underhåll av fastigheter, där BIM implementerats på redan befintliga byggnader med syftet att förenkla underhåll.

De resultat som framkom genom intervjuerna var att underhåll idag inte tar ut någon större mängd information. Anledningen till det är att det idag inte behövs lika mycket information i underhållsskedet som faktiskt skapas under en hel BIM-process. En annan anledning är att det är svårt att förvalta mer information då mycket är programvarubundet. Dock så framkom det att detta relativt lilla informationsbehovet kommer att öka.

På frågan kring vad som krävs för att förverkliga fördelarna med BIM, utan informationsförlust, i ett långtidsperspektiv beskrivs det att det idag saknas ett gemensamt klassifikationssystem, ett neutralt format, en enhetlig hantering, en gemensam definition och standardisering för att detta ska vara möjligt.

Genom ett proaktivt arbete, det vill säga, definiera BIM och tydliggöra vilken och hur mycket information som kommer att behövas i underhåll, utveckla en dialog med mjukvarutilverkare och utveckla ett e-arkiv så öppnas möjligheten att även kunna använda dessa BIM-modeller i en förvaltningsfas.

BIM används och fungerar bra i planerings- och projekteringsfasen men behöver utvecklas för att även kunna användas i förvaltningsfasen. Endast då har Trafikverket nyttjat de digitala möjligheter som kommer med BIM.
Inledning

BIM, Building Information Modelling, är en arbetsmetod eller en process som samordnar den information som skapas, lagras och används i 3D-baserad teknik vid en byggprocess. Intresset för BIM har de senaste åren ökat och kan nu även koppla samman arkitekter, teknikconsulter, entreprenörer, leverantörer, projekttledningsföretag, med flera (Jongeling, 2008). Det finns flera definitioner kring vad BIM är varav en är som följande:

"[…] BIM är all information som genereras och förvaltas under en byggnads livscykel strukturerad och representerad med hjälp av (3D) objekt där objekt kan vara bygdelar, men även mer abstrakta objekt såsom utrymmen. BIM-modellering är själva processen att generera och förvalta denna information. BIM-verktyg är de IT-verktyg som används för att skapa och hantera informationen. BIM är alltså ingen teknik, men ett samlingsbegrepp på hur informationen skapas, lagras, används på ett systematiskt och kvalitetssäkrat sätt." (Jongeling, s. 2, 2015).

Enligt Mörk & Granath (2015) omfattar BIM hela byggprocessen och dess sammanhang och ska kunna användas och förstås av olika användare med olika kompetenser exempelvis beställare, projektledning, arkitekt, leverantör, installationskonsult, eller förvaltning. All data ska koordineras med hjälp av interoperabilitet för att höja kommunikationen.

Enligt Granroth (2011) består byggprocessen av BIM av tre övergripande skeden:

- Planskede, förstudie, program- och projekteringsskede
- Upphandlings- och byggskede
- Förvaltningsskede

Ett införande av BIM kan minska antalet ÄTA-rapporter (ändrings-, tilläggs- och avdragsarbete). Dessa rapporter skapar störningar i produktioner, förseningar, längre byggtider och ökade kostnader. (Gustafsson & Mårtensson, 2010)

De nackdelar som har uppmärksammat är bland annat tillit till informationen, att det finns tillit kring att de ändringar som gjorts har uppdaterats genom alla steg i en BIM-process (Mörk & Granath, 2015; Gustafsson & Mårtensson, 2010).

Bakgrund

Enligt tidigare studier (Svens, 2010) har det inte funnits en utarbetad standard för informationsöverföring mellan de olika systemen som används inom BIM. För att kunna visa på en obruten informationskedja behövs gemensamma definitioner och standarder samt möjligheten att kunna använda informationen i ett tidigt skede. Enligt projektet The life of a space, gjort av BIM Alliance, kan en obruten informationskedja skapas med hjälp av standarderna f2xml, IFC och BSAB (Nilsson, 2011).

Det finns en modell som visar på BIM-mognaden i anläggningsbranschen med olika nivåer som kan uppnås med hjälp av BIM (Trafikverket, 2014a). Enligt nedanstående modell så arbetar Trafikverkets leverantörer mellan nivåerna 0 och 1 och ställer inte idag krav på leveranser enligt nivå 2. Förutsättningarna finns för att nå fram till den markerade röda linjen. (Se figur 1 nedan.)
Figur 1. "Modellen över mognadsnivåer" (Trafikverket, 2014b)

Syfte

En effektiv BIM-process för förvaltning kräver att rätt och tillräcklig information har lagts in under projekteringen. Därför riktar frågorna kring vad för information som krävs, det vill säga, vad Trafikverket behöver veta för att informationen ska vara tillförlitlig. Därefter är frågan hur den sedan skall levereras till beställaren samt om det går att se när något utfördes och av vem. Det förekommer ibland många olika entreprenörer med olika ansvarsområden och vid underhåll kan det vara av stor vikt att kunna se när något behöver bytas ut och när ändringar gjorts.

- Vad krävs för att fördelarna med BIM ska kunna förverkligas och för att kunna säkerställa en obruten informationskedja?
- Vilken information krävs och vad är minsta informationsobjekt?
- Hur fångas information från hela BIM-processen i ett fortsatt långtidsperspektiv?
Disposition

Denna undersökning är en del i utvecklingsprojektet En effektiv digital informationshantering som syftar till att: "utveckla en teoretisk grund för värdering och urval av information i en modern digital kontext, där informationens värde och kvalitet tillvaratas mer enhetligt och mer effektivt stödjer verksamhetsprocesserna. Projektet syftar också till att belysa Trafikverkets roll som renodlad beställare och diskutera förändringar kring makt och ansvar som denna roll medför". Den svenska regeringen beslutade att Trafikverket, med början 2015, ska nytta de digitala möjligheterna genom att implementera och använda BIM från planering till förvaltning. Denna delstudie av projektet undersöker BIM i ett långtidsperspektiv inom Trafikverket.

Metod

För att söka svar på forskningsfrågan har valet blivit att göra en kvalitativ studie, det vill säga en metod som bygger på intervjuer, observationer eller analys av texter. I motsats till kvantitativ metod som undersöker "hur mycket", det vill säga en mängd av någonting, så handlar kvalitativ metod om att tolka hur någon uppfattar någonting, tankar eller intentioner. I en kvalitativ analys av en intervju kan exempelvis valet av använda termer och dess betydelser vara i fokus för analysesen, det vill säga hur något uppfattar något. (Ahrne, Svensson, 2014)

"Kvalitativa undersökningar karakteriseras av att man försöker nå förståelse för livsvärlden hos en individ eller en grupp individer." (Hartman, s.273, 2004)

Denna kvalitativa studie bygger dels på en litteraturstudie kring BIM i ett långsiktigt perspektiv och dels intervjuer med både anställda vid Trafikverket men även intervjuer med ett svenskt företag utanför Trafikverket och ett internationellt teknikkonsultföretag. De anställda vid Trafikverket tillhör verksamhetsområdena Stora Projekt och Investering. Syftet med att blicka utanför Trafikverket är för att se hur andra som använt BIM under en längre tid och hur de gör för att fånga tillräcklig och korrekt information från en BIM-process i ett långtidsperspektiv.

Intervjuerna har varit semistrukturerade, det vill säga halvöppna intervjuer där färdiga frågor användes men följdrågorna kopplades till innehållet i intervjun. Dessa genomfördes genom telefonintervjuer individuellt och pågick mellan 1-2,5 h. Intervjuerna spelades in efter ett informerat samtycke.

Litteraturstudie

Litteraturstudien har gjorts via databaserna Academic search Elite (ASE), Google Scholar och Emerald Insight. Vid en sökning i databasen ASE, med sökordet building information modelling or BIM, visades 6715 träffar. För att få ned antalet träffar utökades sökningen med tillägget information management vilket gav 1122 träffar. Med building information modelling som ämne samt tillägg av sökordet maintenance blev antalet träffar 16. Till stor del rörde dessa artiklar ämnet konstruktion och design men även renovering och reparation av äldre byggnader. Syftet med dessa sökord var att se huruvida det gjorts studier kring hur den information som genererats i en BIM-process användes i förvaltning och underhåll. En av de 16 artiklar som listades vid sökningen var A knowledge-based BIM system for building maintenance (Motawa, Almarshad, 2014)

3 Se projektbeskrivning: http://fudinfo.trafikverket.se/fudinfoexternwebb/pages/ProjektVisaNy.aspx?Projektid=3358vv

46
Syftet med den studien var att utveckla ett integrerat system för att fånga information och kunskap rörande byggnaders underhåll för att kunna förstå byggnaders förfall men även för att kunna göra korrekta beslut gällande underhåll. I denna användes BIM som ett sätt att fånga relevant information. Flera av dessa 16 artiklar som listades efter sökningen berörde Facility Management (FM) där BIM användes på redan byggda anläggningar. I artikeln Building information Modeling (BIM) for existing buildings (Volk, Stengel, Schultman, 2013) beskrivs att BIM oftast används vid planering, design och konstruktion men att det nu också finns intresse av att studera de senare stegen i livscyklen, det vill säga underhåll, renovering eller rekonstruktion. Studien är en litteraturstudie där 180 akademiska publikationer undersökt vilka berörde ämnena BIM och existerande byggnader och underhåll. Studien visade att fördelarna med BIM, som fås vid planering och projektering, skulle även kunna erhållas vid en implementation av BIM i redan existerande byggnader. De fördelarna är exempelvis förkortade tidsplaner för renovering, reducerade kostnader, mindre arbetsolyckor, dokumentation och hantering av data.

För att försöka finna artiklar som rörde BIM och dokumenthantering så gjordes en sökning på sökorden building information modelling or BIM och records management som gav 16 träffar. Dessa var ungefär de träffar som kom fram från tidigare sökning.

Vid en sökning på databasen Emerald Insight och sökordet building information modeling gav 83 832 träffar. Därefter gjordes en sökning på endast sökordet BIM, vilket gav 601 träffar. Även här handlade många artiklar om BIM och Facility Management.

Vid en sökning på Google Scholar användes sökorden building information modeling och gav 14 100 träffar. För att avancera sökningen söktes endast rubriker som innehöll sökorden building information modeling och maintenance, vilket gav 6 träffar. Återigen rörde dessa artiklar BIM och Facility Management. I artikeln Enhancing maintenance management using building information modeling in facilities management (Su, Lee, Lin, 2011) beskriver BIM ha använts i en studie för att hantera och underhålla faciliteter. I studien föreslogs ett BIM-baserat facilitetshanteringssystem som skulle användas av förvaltare inom FM. Denna visade sig ge nytta för de som förvaltade byggnader då de, bland annat, enklare kunde ta till sig information och att effektiviteten kunde förtydligas. Dock så fanns det också begränsningar med studien, bland annat gällande lagring av information.

Vid sökandet av litteratur som rör BIM och underhåll i ett långtidsperspektiv så är materialet relativt tunt. Framförallt rör artiklarna BIM och FM eller planering och projektering.

För att ytterligare söka litteratur i ämnet så har jag sökt examensarbeten i ämnet och gått vidare genom referenslister. Flera av dessa examensarbeten, samt forskningsrapporter, har listat nyttoeffekterna av ett införande och ett användande av BIM. I resultaten i forskningsrapporten BIM istället för 2D-CAD i byggprojekt, skriven av Rogier Jongeling (2008), beskriver hur bland annat projekteringprocessen blivit effektivare liksom kommunikationen blivit tydligare i beslutprocessen. Även möjligheten att tidigt kunna göra snabba analyser är en nyttoeffekt som läggs fram i rapporten. Dessa är några av de nyttor som visats i en jämförande studie mellan användandet av BIM och 2D-CAD i byggprojekt. Dock så beskriver Jongeling även att det behövs göras studier sett från byggherrens och förvaltarens perspektiv.
Nedan listas de sökord som användes i de olika databaserna:

- Building information modelling or BIM
- Building information modelling or BIM AND information management
- Building information modelling or BIM AND information management AND maintenance
- Building information modelling or BIM AND records management

BIM i Trafikverket

I dokumentet *Strategi för BIM i Trafikverket* (Trafikverket, 2014a) står det beskrivet att Trafikverket ska ligga i linje med Digitaliseringskommissionens mål att tillvarata de möjligheter som kommer med digitalisering och aktivt delta till utvecklingen av BIM. Målen för BIM i Trafikverket är dels ett långsiktigt mål och dels ett kortsiktigt där det kortsiktiga målet är att: ”Trafikverket ska ställa tydliga krav på att BIM används i investeringsverksamhet enligt en definierad lägstänvå från 2015”. Det långsiktiga målet innebär att: ”Anläggningsinformation ska med hjälp av BIM-metodik hanteras i ett livscykelperspektiv, för att information ska kunna hanteras och användas effektivt”. (Trafikverket, 2014a)

Byggnadsinformationsmodellering - BIM

Byggnadsinformationsmodellering kan ses som en process, lagrad i flera olika databaser och kan vara gemensam för flera informationssystem. De olika informationssystemen kan vara information gällande exempelvis budgeteringsunderlag, tekniska beskrivningar eller aktivitetsplanering med mera. Ett CAD-system är ett exempel på ett informationssystem som kan ingå i ett BIM-system med informationen presenterad som ritningar. Informationsutbytet inom BIM-processen kan ske mellan parter via gemensam lagringsplats, se figur 1. (Trafikverket, 2014b)
Från planering till förvaltning - Fokus på informationen
Det krävs samarbete och överenskommelser mellan olika system och mellan sändare och mottagare för att det ska finnas ett fungerande informationsutbyte. Ett fungerande informationsutbyte innebär att informationen är entydig, lagrad på ett ställe och inte överflödig. Stämmer inte överenskommelserna så finns det risk för att data ersätts vilket kan leda till fel och informationsförlust. En annan konsekvens kan bli att ambitionsnivån sänks genom att exempelvis utesluta vissa funktioner. (Trafikverket, 2014b)

Arkivering av digital information
Enligt Trafikverkets egen rapport Öppen BIM-standard (2014), ska den digitala information som skapas i BIM-modeller också kunna arkiveras. Vidare beskrivs i rapporten att det idag saknas tydliga riktlinjer på hur information som genererats i en BIM-process ska arkiveras och såsom det är idag så är det PDF-ritningar i 2D som tas ut från BIM-processerna. Detta innebär en informationslust då mycket information är knutet till objekten i modellen. Trafikverket ska därför vara en kravställare för att kunna utnyttja all den information som genererats i processen i förvaltningsprocessen och kunna lagra denna information över tid. (Trafikverket, 2014b)

Standardisering

Sammanfattning av intervjuer

Intervjufrågorna som användes i denna studie var baserade på forskningsfrågan: Vad krävs för att fördelarna med BIM ska kunna förverkligas och för att kunna säkerställa en obruten informationskedja? Syftet med intervjuerna var att tydligt kunna se hur man arbetar för att fånga tillräcklig information i ett långtidsperspektiv. Frågorna delades upp i tre kategorier; BIM idag, Information till förvaltning och underhåll samt Standardisering. BIM idag bestod av frågor rörande behandlade frågor och nackdelar med BIM. Frågorna i kategori Information till förvaltning och underhåll behandlade frågor kring bland annat minsta informationsobjekt i en BIM-modell, hur information samlas in och överlämnas till underhåll och om man idag vet vilken information som krävs för att underhåll av ett BIM-projekt skall fungera i ett långtidsperspektiv. Kategorin Standardisering innehöll frågor om vilka standarder som används i informationshantering. (Se bilaga 1)

Intervjuer

De tre från Trafikverket som intervjuade benämns som A1, A2 och A3 och de övriga två som B1 och C1. Nedan presenteras de resultat av dessa intervjuer som genomfördes i denna studie.

BIM idag

Den inledande delen av intervjuerna bestod av frågor som rörde hur arbetet med BIM ser ut idag, vilka möjligheter samt nackdelar som upptäcks med införandet av BIM.
Möjligheterna med BIM
Intervjuerna inleddes med att var och en fick beskriva vad de ser för möjligheter med BIM idag.

Möjligheterna med BIM är som tidigare nämnts många och på Trafikverket ser A3 att detta kan utvecklas med att föra in exempelvis tids- och kostnadssimulering och där även hur de ska kunna kännas ställa för leverantörer att kunna utföra dessa tillämpningar. A3 beskriver också att man ska integrera arbetsmiljöriskerna, Co2-spårning och även AR-teknik det vill säga att få med sig den virtuella modellen ut i verkligheten. Ett exempel på det är att man läser in till exempel installations i en surfplatta och med hjälp av GPS och kamera så kan det projekterade ses mot det som faktiskt blivit byggt. Flera av dessa möjligheter fungerar redan på sina håll men A3 anser att det inte är sammanhållet och används enbart för vissa projekt som små öar av BIM.

B1 från det svenska företaget som utvecklar mjukvara som ska underlätta användandet av BIM beskriver hur de varit tydliga tidigt med att beskriva att BIM är en process med tydliga samarbeten för att förstå helheten. B1 beskriver att de ser BIM som ett beslutsstöd då de av erfarenhet sett hur många bygger in för mycket information in i modellen, att man glömmer bort att bygga i verkligheten. Med beslutsstöd så menar B1 att modellen ska svara på en fråga, det kan vara en fråga som till exempel rör hur lång en bro ska vara för att klara en viss passage. Tilliten till modellen är också av stor vikt enligt B1, som beskriver att det som bestäms ska föras in i modellen ska göra det under hela projekteringen annars kan inte modellen svara på en initial frågan.

C1 anser att för att kunna se möjligheterna så är det av stor vikt att skilja på fastighet och anläggning när man talar om BIM. Detta för att, enligt C1, bygghandlingssysslingen heter likadant men ser annorlunda ut vilket gör att även förutsättningarna blir annorlunda. Det finns en nivåförändring som inte är kompatibel mellan verksamheterna då anläggningssidan använder ordet systemhandling och byggsidan programhandling. Detta kan leda till kommunikationsproblem vilket medför att varken BIM eller projektet fungerar. C1 menar att möjligheterna är lika men förutsättningarna olika för fastighet och anläggning.

Nackdelar
BIM har visat sig fungera väldigt bra i planering och projektering men det finns svårigheter med hur man ska få med all information som användes vid projektering till underhållsdelen. Nedan beskriver olika nackdelar och problem som de intervjuade stötter på med BIM.

A1 beskriver att nytorna med BIM i ett livscykelperspektiv inte kan uppnås idag då modellen byggs upp i ett projekt och att det blir ett informationsglapp vid överlämnandet till underhåll. Det

Frågor om återanvändning och underhåll

C1 anser att i och med att man börjat använda BIM så har det skett vissa förändringar även om hen dock anser att arbetssättet inte skiljer sig mycket från det tidigare. Byggrunstiden är ungefär densamma men det har skett en liten förändring. Förändringen är ordvalen och de nya verktygen samt att i den nya processen så måste besluten komma tidigare. Vidare beskriver C1 hur kunskapen kring de olika BIM-verktygen och vad BIM är och hur det kan användas har gått snabbt de sista tio åren. Det fanns dock en större kunskap om hur själva byggrunstiden såg ut och vad ingenjörerna gjorde, idag är detta mer dataorienterat enligt C1 och anser att ingenjörerna saknas. C1 diskuterar vidare att ingenjören med sitt kunskap om samverkan och byggrunntiden måste tillbaka och beskriver att tekniken finns idag men frågar sig om den används rätt, att alla förstår vad de gör.
Lagring av information från BIM-modell

C1 beskriver att vid arkivering så arkiveras CAD-filer eller pappershandlingar och att det möjligen går att arkivera en hel modell men då behövs fortfarande en samordningsfil eller en relationsfil som arkiveras separat. C1 anser att denna typ av teknik har funnits länge, att det är 90-95 % samma teknik och 5-10% som ändrats och det kan vara mjukvarukonkurrens.

Krav på information

För att underhåll av exempelvis ett bygge där man använt BIM-modeller ska fungera i ett långtidsperspektiv så ställdes frågan om man vet idag vilken information som behövs och om den informationen är kopplad till tid som talar om när något bytts ut och av vem. Med koppling till tid så ges också en viss historik i en underhållspraxis och därför diskuterades även frågan om historiken kan följa med i förvaltning då det kan förekomma olika entreprenörer med olika ansvarsområden under en byggprocess.

A1 beskriver att det på Trafikverket idag finns många system som hanterar information på underhåll och att hanteringen av den informationsmängd som produceras i en BIM-process ser olika ut. En förutsättning för att lösa det är att ha en enhetlig hantering enligt A1. Detta hänger

Enligt A3 så skriver underhåll in mycket information efter leverans i form av listor av olika attribut. Det finns mycket information i dessa attribut vilka är på objektsnivå och är kopplat till exempelvis var i världen objektet finns, referenskod och placering, koordinater, märkning, status, vilken kommun objektet finns, ansvar för projekt och underhåll, koppling till dokumentation med mera. Det kan också vara specifik information kring produktinformation, produktnummer, tillverkare, modelltyp, serienummer, installationsdatum och garantitid. På olika filservrar går det
att koppla till komponentattribut som används för själva underhållsdelarna via underhållssystemet Maximo. På frågan om dessa attribut kan följa med i ett långtidsperspektiv så beskriver A3 att det är inget som ajourhålls, det vill säga har en leverans gjorts i ett visst format så är det i det formatet som det finns i. Det finns fortfarande krav att exempelvis ritningar sparas i PDF-format. A3 beskriver att BIM-modeller är så pass nytt att det inte finns någon egentlig lösning än för det långsiktiga perspektivet. Enkelt förklarat, beskriver A3, så flyttas informationen från ett intelligent format till ett mindre intelligent format.

Även C1 beskriver att de diskussioner som råder kring vilken information som krävs för det långsiktiga perspektivet gäller problemet med det ständiga mjukvaruförändringarna. Väljer en beställare att göra en mjukvaruförändring så hänger inte förvaltningen med.
Standardisering

För att ha kontroll över all information i en organisation så krävs struktur och standardisering, därför ställdes frågan kring vilka standarder som styr informationshantering i underhåll.

Analys och diskussion

Detta avsnitt är en diskussion och ett sammanfattande kring forskningsfrågorna och frågeställningarna samt ett jämförande av de svar som framkom vid intervjuerna med litteratur som hittats i ämnet.

Att nytta de digitala möjligheterna

De inledande frågorna rörde de möjligheter som finns med BIM idag. Möjligheterna med BIM beskrivs bland annat att genom att använda BIM så erhölls en mer enhetlig och strukturerad informationshantering, förbättring av kommunikation, tidigare analyser, större förståelse av helhet och att modellerna är lättare att förstå än ritningar vilket gör projektering mer tillgänglig med mera.

Utmaningar och behovet av arkivering

Det finns många fördelar av ett införande av BIM men de intervjuade beskrev även nackdelar. För att kunna nytta fördelarna med BIM så beskrev Trafikverket behöva arbeta mer proaktivt, det vill säga att i ett tidigt stadium kartlägga vilken informations som kan komma att behövas i framtiden.
I en BIM-process genereras stora mängder information som underhåll endast nyttjar en liten del av. Som det beskrevs i intervjun med B1 så uppskattade hon att endast 1-2% av all information från en sådan process plockas ut. B1 anser att detta att detta har att göra med att man inte vet hur mer information ska kunna tas omhand men att uttagen kommer att öka.

Den snabba tekniska utvecklingen kräver kunskap och C1 beskriver också att det sunda förnuftet har fått stå tillbaka för det tekniska. Ett exempel beskrevs en nyutbildad ingenjör som har ett tekniskt arbetsätt där hon ritar avancerade modeller utan att kunna relatera till en fysisk anläggning. Med detta, menar C1, att tilliten till 3D-ritningar minskar då det också kräver en fot i det faktiska bygget.

Att arbeta med BIM visar också på en transparens, då till de som arbetar i modellen dagligen lämnar ifrån sig arbete som inte är färdigt. Alla ändringar ska kunna ses, vilket ger ett nytt sätt att arbeta. Detta har B1 upplevt som ett problem då många är vana att arbeta mer slutet och först lämna ifrån sig material vid ett projekts slut.

I intervjuerna framkom även att när det gäller arbetet med BIM så ligger ett effektivt användande av BIM i händerna på mjukvarutillverkare. Därför bör det utvecklas ett samarbete eller en dialog med mjukvarutillverkare för att få rätt stöd som passar Trafikverkets syfte med BIM.

Idag används tretton förvaltningssystem, detta är något som A3 tycker borde justeras, det vill säga att dessa tretton blir två där ett är ett ställe att ladda upp information och ett annat för uttag.

I intervjuerna så framkom det att det inte finns teknik för att kunna lagra en hel modell idag, en lagring som underhåll kan använda i förvaltningssyfte. Detta beror till stor del på att det är programvarubaserat och inte kan ajourhållas. Detta har i intervjuerna beskrivts som en brist på tillgänglighet. Efter ett projekts slut överlämnas information till underhåll i format som är tillgängliga och läsbara över tid.

En liknande diskussion återfinns i artikeln BIM for building refurbishment and maintenance:

Oavsett metod eller val av system så behöver den information som genererats i en BIM-process göras mer information tillgänglig, sökbar och användbar även i ett längre perspektiv. Ett resultat från den ovan nämnda artikeln beskriver att det behöver utvecklas en BIM-baserad standard med interoperabilitet mellan mjukvara som används i FM och BIM-databaser för att det data som förflytts ska fortsätta att vara exakt.

BIM – Att nå nivå 3

Förutsättningarna för BIM i Trafikverket år 2015 är att nå fram till den streckade röda linjen i mognadstrappan. (figur 1). För att nå till nivå 3 så måste, enligt analyser av de intervjuer som gjordes i denna delstudie, det starta med ett *proaktivt arbete*, det vill säga att ha en *enhetlig hantering, standardisering* men även arbeta fram en gemensam *definition* av vad Trafikverket menar med att arbeta med BIM. Det kräver också ett *tydliggörande av informationsmängd*, det vill säga att veta vilken och hur mycket information som krävs för underhåll nu och i framtiden. Denna information behöver ha en *tydlig informationsstruktur*. Som ovan nämnt behövs en *gemensam klassificering* som består av utvecklingen av BSAB 96 till BSAB 2.0 samt *neutrala format* som här menas IFC. För att ytterligare få kontroll på informationen så behövs *antalet förvaltningssystem minskas* och skapa en dialog för att få rätt mjukvarustöd. Det finns även en arkivvetenskaplig utmaning i hanteringen av BIM-genererad information då den också behöver vara *autentisk, tillförlitlig och användbar* även i ett långtidsperspektiv. För att kunna nå nivå 3 så behöver det finnas ett sätt att kunna lagra den information som genereras i en BIM-process. Detta kan möjliggöra göras genom att *utveckla ett e-arkiv* för hantering av underhåll av informationen. Genom ett e-arkiv ska den BIM-genererade informationen kunna svara till de arkivvetenskapliga kraven. I Trafikverkets mognadstrappa (Se figur 4 nedan) redovisas de resultat som framkom från de intervjuer som gjordes under delstudien.
Figur 4. Mognadstrappa fritt utvecklat efter delstudiens resultat av författaren.

Som det är idag så används BIM mest i planering och projektering samtidigt som Trafikverket har som mål att nyttja de digitala möjligheterna. Att ta ut information i PDF är möjlig men ett bra sätt att ta tillvara på information men det är inte att nyttja de digitala möjligheterna. Framtiden är att kunna ta fram en modell även i förvaltning och kunna se vad som ska bytas, vad som bytts och vad nästa steg i underhåll är.

BIM i ett arkivvetenskapligt perspektiv

Byggnadsinformationsmodellering är en process som börjar att användas mer och mer i flera olika branscher. I och med ett införande av BIM så skapas ständigt ny information bland annat då ändringar görs men även att BIM medför ökat åtkomst och ökad tillgänglighet till informationen då fler än projekteraren ser innehållet i modellen.

I den arkivvetenskapliga domänen används Records Continuum Model (Continuum) som ett sätt att se på dokumenthantering. I ett Continuum-perspektiv krävs ett proaktivt tillvägagångssätt för att synliggöra all information med relevant metadata så att informationen fortsätter vara sökbar och användbar över tid. Modellen belyser den digitala informationens fortsatta värde på grund av dess lika fortsatta användande.(Eastwood, 2010)

I en BIM-process skapas stora mängder information, denna information ska i ett underhållsperspektiv kunna vara sökbar och användbar även efter ett byggnadsprojekts slut. Med tanke på att det som byggs med BIM idag har en lång livslängd så behöver informationen kunna ses i alla led, från projektering in i ett arkiv. Utifrån ovanstående diskussion föreslås en fortsatt
undersökning med utgångspunkt i ett Continuum-perspektiv där den BIM-genererade informationen som underhåll ska förvalta ska kunna göras tillgänglig genom ett e-arkiv. Genom att se på informationens fortsatta värde genom hela dess existens så skulle syftet med en sådan studie vara att studera om denna form av information kan svara på arkivvetenskapliga kraven autenticitet, integritet, användbarhet och tillförlitlighet.

Förvaltning av BIM-relaterad information utanför Trafikverket
En annan relevant delstudie är att studera andra branscher som använder 3D-modeller och hur dessa gör för att göra informationen tillgänglig över tid. BIM används till stor del som ett sätt att arbeta i nuet, i planering och i projektering men kommer troligen mer och mer att vara ett sätt att arbeta i förvaltning. Hur fungerar utvecklingen av mjukvara som används i BIM-processer? Finns det något tänk i det efterföljande arbetet? Syftet med en sådan studie är att undersöka huruvida olika mjukvaror fungerar i ett underhållsperspektiv inom olika branscher.

Referenser

Figurförteckning

Figur 2 – BIM i Trafikverket. 2015

Figur 3 – "Olika aktörer utbyter information genom BIM". *Öppen BIM-standard – Begrepp, process och datamodell*. Trafikverket. TDOK 2014:090. 2014b, s. 16

Figur 4 – Mognadstrappa fritt utvecklat efter delstudiens resultat av författaren.
Bilaga 2.1. Intervjufrågor

BIM idag – Introduktion

1. Vad ser du för möjligheter med BIM idag?
2. Vad ser du för nackdelar med BIM idag?
3. Vad innebär det att arbeta med BIM?

Information till förvaltning och underhåll

1. Vad är minsta informationsobjekt?
2. Hur skall denna information levereras till beställaren?
3. Går det att se när ändringar utförts och även av vem?
4. Går detta att följas upp i ett långtidsperspektiv, det vill säga hur tas informationen tillvara för att vara användbar och tillgänglig i ett långtidsperspektiv?
5. Finns det tydliga leveransspecifikationer kring de informationskrav som förs mellan byggprocess och förvaltningsprocess?
6. Hur kravställs informationen och hur följs detta upp?
7. Hur lagras, vidareanvänds och underhålls leveranserna hos beställaren?

Standardisering

1. Vilken/vilka standarder styr informationshantering?
2. Vilken/vilka standarder styr informationshantering i förvaltning?
Innehåll

Abstract/sammanfattning 65
Inledning 66
 Syfte 66
 Frågeställningar 67
 Disposition 67
Metod 67
Projekt Hallandsås 67
 Tunnel- och järnvägsanläggning 68
 Användande av BIM i projekt Hallandsås 68
 Tillgängliggörande av information 69
Sammanfattning av intervjuer 69
 Intervjuer 69
 BIM-modell 69
 Leverans till underhåll 69
 Interoperabilitet 71
 Proaktiv förvaltning med hjälp av BIM 71
 Framtidens BIM 73
 Användandet av BIM i projekt Hallandsås i ett underhållsperspektiv 73
Analys och diskussion 74
Referenser 76
 Bilaga 3.1. Intervjufrågor 77
Abstract/sammanfattning

Denna delstudie är en fördjupning av den tidigare studien BIM i ett långtidsperspektiv – att nyttja de digitala möjligheterna från projektering till förvaltning, med ett fortsatt fokus på förvaltning av BIM-genererad information. Ett av resultaten från den tidigare studien visar på att det krävs ett mer proaktivt arbete där BIM definieras samt tydliggöra vilken och hur mycket information som underhåll kommer att behöva för att ha en fungerande förvaltning och för att Trafikverket ska kunna nyttja de digitala möjligheter som kommer med BIM-metodik. Den tidigare studien visade även att BIM används och fungerar väl i planerings- och projekteringsfasen men behöver utvecklas ytterligare för att kunna användas i underhåll.

Målet med användandet av BIM i Trafikverket innebär hantering i ett livscykelperspektiv, det vill säga planering, projektering och förvaltning. Syftet med denna delstudie är att dels undersöka hur BIM har använts genom hela livscykelperspektivet i ett specifikt projekt och hur den information som genererats under arbetets gång levererats till förvaltning och dels att undersöka hur denna information används genom BIM i underhåll. För denna studie valdes Projekt Hallandsås där man använt sig av BIM på ett betydande och framgångsrikt sätt.

Metoden i denna delstudie har bestått av intervjuer av anställda vid Trafikverket samt en anställd vid ett internationellt teknikkonsultföretag. De som intervjuats har alla arbetat/arbetar i Projekt Hallandsås.

De resultat som framkom genom intervjuerna var bland annat att trots att BIM-metodik kom in i en senare fas i projektet så har användningen beskrivits som framgångsrik och har gjort att pengar och tid har kunnat sparas. Informationen samlades i ett objektsbibliotek som skapades. En annan fördel med användningen var att få en överblick över projektet och det gick att göra analyser gällande kollisioner mellan olika objekt samt att själva modellerna gjorde det lättare att samverka över teknikområdena.

Intervjuerna visade även att livscykelhanteringen inte är någon realitet idag och om det ska bli det så behöver arbeta på ett annorlunda sätt där underhåll är med i ett tidigare skede. Hallandsåsen är idag väldigt uppdelat med olika förvaltningssystem och de intervjuade ansåg att det bör ligga en ambition vid att bygga ett underhållssystem där de olika förvaltarna länkas samman samt en gemensam databas som lagrar och sorterar BIM-genererad information.
Inledning

Byggnadsinformationsmodellering (BIM), är en modern arbetsmetod eller process där den information som skapas i 3D-baserad teknik i en byggprocess kan samordnas och visualiseras i en gemensam modell (Jongeling, 2008).

Den arkivvetenskapliga utmaningen som framkom i rapporten är att den BIM-genererade information som levereras till underhåll behöver vara autentiskt, tillförlitlig och användbar även i ett långsiktigt perspektiv. Såsom det framkommit i rapporten så används BIM-processen i planering och projektering och det som behöver utvecklas är användandet i ett förvaltningsperspektiv (Hellmer, 2015).

Trafikverket har i flera olika projekt använt sig av BIM. I järnvägstunnelsprojektet Projekt Hallandsås har Trafikverket, i samarbete med Sweco, använt BIM i planering och projektering. Som en fördjupning av Trafikverkets mål med införandet och användandet av BIM ämnar denna studie att undersöka ett specifikt projekt där BIM har haft en betydande och framgångsrik roll. 2012 vann Sweco priset **Be Inspired Awards**, i kategorin **Innovation in Rail and Transit**, för sitt användande av BIM i tunnelprojektet Hallandsäsen.

Syfte

Målet med användandet av BIM inom Trafikverket innebär att: ”Anläggningsinformation ska med hjälp av BIM-metod hanteras i ett livscykelperspektiv, för att information ska kunna hanteras och användas effektivt” (Trafikverket, 2014). Detta livscykelperspektiv gäller från planering till projektering och slutligen även förvaltning. Syftet med denna delstudie är att dels undersöka hur BIM har använts genom hela livscykelperspektivet i Projekt Hallandsås och hur den information som genererats under arbetets gång levererats till förvaltning och dels att undersöka hur denna information används genom BIM i underhåll.
Frågeställningar

- Vad innebär användandet av BIM i Projekt Hallandsås i ett underhålls- och långtidsperspektiv?
- Hur har BIM använts i Projekt Hallandsås?
- Kan den BIM-genererade informationen som skapats under projektets gång även användas i underhåll i ett långsiktigt perspektiv?

Disposition

Denna undersökning är en del i utvecklingsprojektet En effektiv digital informationshantering som syftar till att: ”utveckla en teoretisk grund för värdering och urval av information i en modern digital kontext, där informationens värde och kvalitet tillvaratas mer enhetligt och mer effektivt stödjer verksamhetsprocesserna. Projektet syftar också till att belysa Trafikverkets roll som renodlad beställare och diskutera förändringar kring makt och ansvar som denna roll medför”.4

Den svenska regeringen beslutade att Trafikverket, med början 2015, ska nyttja de digitala möjligheterna genom att implementera och använda BIM från planering till förvaltning. Denna delstudie av projektet undersöker BIM i ett långtidsperspektiv inom Trafikverket.

Metod

I denna delstudie söktes även Trafikverkets egen information gällande användningen av BIM-metodik i projekt Hallandsås. Detta skedde genom anställda på Trafikverkets bibliotek dock utan resultat.

Projekt Hallandsås

4 Se projektbeskrivning: http://fudinfo.trafikverket.se/fudinfoexternwebb/pages/ProjektVisaNy.aspx?ProjektId=3358vv
Tunnel- och järnvägsanläggning

Projekt Hallandsåsen liksom Förbifart Stockholm har beskrivits som Trafikverkets storsatsningar där allt projekterats i BIM. I Svensk Byggtjänst *Omvärldsbewakning* från 2011 går att läsa övergången från 2D till 3D beskrivs 3D som ett nytt sätt att tänka men även att det kan leda till minskade kostnader. Det är ovanligt att ändringar och tillägg kan vara 10 % av kostnaderna och dessa kan minskas genom övergången inom anläggning. Det finns även en kamp om dominans gällande olika BIM-verktyg och lösningar, där både öppna lösningar förespråkas liksom licenskamp mellan exempelvis Autodesk, Bentley, Tekla och Graphisoft med flera (Svensk byggtjänst, 2011)

Användande av BIM i projekt Hallandsås

BIM-metodikens användande i projekt Hallandsås skildras även av Adtollo som beskriver hur BIM-modellen används för att synliggöra och förekomma problem i projektet. En av fördelarna med att använda BIM i projektet var att få en överblick för att exempelvis kunna göra analyser gällande kollisioner mellan olika objekt liksom järnvägssträckningen mot själva tunneln. Modellen gjorde att det var lättare att samverka över teknikområdena (Adtollo).

Användandet av BIM i projekt Hallandsås gav högre effektivitet och kvalitet genom bland annat mängdmätning av material, utsättning, och maskinstyrning. BIM användes till hela projektet som till exempel bana, el, signal, tele, kanalisation, mark samt VA. En stor vinst i detta var att det gick att förekomma problem som till exempel collisioner samt visualisering av bygget. De fördelar som
kommit med användandet av BIM i projekt Hallandsås är många men det finns också en del nackdelar. En nackdel var att det tog tid och kostnad för att utveckla metodiken. För att förhindra det borde utvecklingen av BIM ske mer öppet och i större projekt (Hörberg, Jönsson, 2016). De erfarenheter som ett projekt ger, för- och nackdelar borde samlas och det borde finnas tillgängligt för andra.

Tillgängliggörande av information
Då tunneln ligger i ett berg med skiftande geologi med delvis uppsprucken berggrund och innehållandes stora mängder vatten så är det en utmaning i att förvalta tunneln. Tunneln innehåller även flera svaga och geologiskt komplicerade zoner (Trafikverket, Resan genom.) Det objektsbibliotek som skapades inom projektet tillhör järnvägen med information som är direkt knutet till objekten och finns publikt på IDA (Hörberg, Jönsson, 2016).

Projektet visar att arbetet med BIM har kommit långt inom projektering och produktion men det beskrivs vara en bit kvar innan man kommit lika långt i BIM och förvaltning (netcommunity).

Sammanfattning av intervjuer
Intervjufrågorna i denna delstudie baserades på den övergripande forskningsfrågan: Vad innebär användandet av BIM i Projekt Hallandsås i ett underhålls- och långtidsperspektiv? Syftet med intervjuerna var att få en bild av huruvida användandet av BIM i ett förvaltningsskede funnits med även under det pågående bygget. När tunneln stod färdig, hur levererades informationen till underhåll? Och kommer då BIM att användas av underhåll och i vilken utsträckning används BIM i de olika förvaltningssystemen som är kopplade till tunneln idag? (Se bilaga 1)

Intervjuer
I denna delstudie intervjuades 3 personer, som alla är eller har varit knutna till projektet, där två av dessa är anställda vid Trafikverket och den tredje är anställd vid ett internationellt teknikconsultföretag som arbetat i projektet. De från Trafikverket som intervjuades benämns nedan som A1 och A2 och hen från det internationella teknikconsultföretaget benämns som B1.

BIM-modell
Intervjuerna inleddes med att de som intervjuades fick beskriva sin bakgrund och på vilket sätt de arbetat med Projekt Hallandsås. Därefter följde frågan på när BIM-modeller skapades i projektet och hur man arbetat med dessa modeller i projekteringen.

Leverans till underhåll
När projekteringen är klar skall information levereras till underhåll som vidare ska förvalta anläggningen. I intervjuerna ställdes därför frågor kring hur själva överlämnandet gått till.

Vid överlämnandet till tunnel så fanns det en del som önskade att arbeta med modellerna, att använda sig av modellerna i underhållsarbete. A1 beskriver att de då var tvungna att söka dispens för att få leverera anlägningsmodeller i 3D istället. Fördelen är, enligt A1, att genom modellerna kan då tunnel direkt i en av anläggningsmodellerna föra in var det finns droppar, att göra en sprickkartering direkt i modellen.

Även B1 beskriver överlämnandet och att tunnel fick söka dispens och tillägger att det som söktes dispens för var egentligen att slipa generera 1500 sektions- och planritningar av tunneln vilket annars är kravställt i dokumentationen, det vill säga, att lämna in 3D-modeller av tunneln istället för sektionsritningar. Modellen styckades upp då en leverans av hela Hallandsåstunneln som en hel modell skulle blivit väldigt tung och svår att hantera.

Även B1 beskriver leveransen till underhåll av järnväg men pekar snarare på att en leverans till tunnel berodde på att tunnel har ett mer förenklad förvaltningssystem jämfört med järnväg. Enligt
B1 kunde inte järnväg ta emot 3D, den geografiska informationen, i sitt förvaltningsystem. B1 beskriver att järnvägs förvaltningssystem är mer avancerat och det är väldigt stort kring vad man får lägga in och att egentligen inte emot objektsorienterad 3D-information. Det som levererades till tunnel, enligt B1, bestod av geometrimodeller i 3D som beskrev tunnelnoms utbredning, bakomliggande tätskikt, dränering och släckvattensystem men det är även en stor mängd annan information i form av konstruktions- och armeringsritningar, manualer, produktblad med mera.

Även A2 diskuterade leveransen till tunnel och järnväg och ansåg att anledningen till att järnväg inte önskade få geometrimodeller berodde på teknikslag, att man inte hade för vanligt att arbeta med modellfiler. A2 beskriver även att spår och växel inte heller kunde se fördelarna med arbetssättet och att även det handlade om teknikslag.

Interoperabilitet

B1 beskriver att när man pratade med tunnelunderhåll om att ha mer information så ansåg de att det fanns ett intresse av att ha läget på gångbanor och kanalisation som även finns i tunneln men i och med att den informationen tillhörde järnvägsunderhåll och att de då behövde vända sig till dem för att be om den informationen. Det finns idag ingen sådan kommunikation dem emellan, man har inte tillgång till varandras system och B1 förklarar att det troligen hänger samman med den tidigare uppdelningen som fanns med Banverket och Vägverket och hur det såg ut innan.

Proaktiv förvaltning med hjälp av BIM

I den litteraturstudie som gjordes i den tidigare studien så beskrevs många fördelar i att planera och att projektera med hjälp av BIM-metodik. Därför ställdes även frågan om det finns några fördelar med att använda BIM i ett underhållsperspektiv men även om inte underhåll kan vara med redan i planering av en anläggning, då underhåll ska kunna beskriva vilken och hur mycket information de kommer att behöva för att kunna förvalta anläggningen.

Enligt A1 så ser hen egentligen enbart fördelar då hela arbetsmetodiken kommer med sådana fördelar som är gångbara i ett uppföljningsmässigt perspektiv. A1 anser att underhållsarbetet blir mer effektivt då förvaltaren ena året exempelvis kan föra in information gällande om och var det droppar eller var det finns sprickor. Året därpå när samma ställen skall undersökas kan modellen tas fram igen.

Fördelarna finns men A1 anser att underhåll är oftast den sista på vagnen, och tillägger att när det

Även B1 beskriver att BIM kan användas i tunnelunderhåll i form av att dokumentera skador som sprickbildningar och läckage. Det kan med förde göras i en 3D-modell på ett tydligare sätt än att traditionellt rita in det i en PDF-rutning, då 3D ger ett tydligare sammanhang.

Fördelarna med att använda BIM i ett förvaltningskede beskriver A2 är det blir så mycket mer information, från tidiga skeden, tidiga borrningar, prognoser för jorddjup och så vidare. Att man ska kunna arbeta mer med modellen och få med sig information om till exempel grundvattnet och hur grundvattnet strömmar och i modellen kan alla kärnborrhål finnas kvar. In i förvaltningskeden kan man få information från byggsedan som till exempel bergkvalitén i bygget, förstärkningar, provtagningar och bergkontur. A2 beskriver att när man efter 10 år börjar få problem med sättningsar i en byggnad ovanför tunneln så kan man gå in i modellen och se exempelvis en svaghetszone i berget som för vattnet och det är kanske där åtgärden bör ske. Så fördelen med BIM, enligt A2 är att det för med mycket information för att hantera olika typer av frågeställningar som kan dyka upp senare i ett förvaltningskede. Enligt A1 finns det många fördelar med att arbeta med BIM i ett förvaltningskede bland annat kostnadsbesparingar liknande de som beskrivs i projekteringsfasen.
Informationen som levereras till underhåll skall vara autentisk, tillförlitlig men även användbar i ett långtidsperspektiv. Därfor ställdes frågan på om det finns sedan tidigare specifiserat vilken information som behövs för att kunna användas i ett underhållsperspektiv av Hallandsåsen med syftet att det inte skall bli ett informationsglapp?

Framtidens BIM

A2 beskriver att det är en enorm fördel att jobba med BIM-modeller då det medföljer så mycket information och belyser vidare att ju tidigare förvaltning kommer in, desto bättre är det och de kan vara med och påverka. A2 beskriver BIM som en slags frälsning som möjliggör ett samlande av data inför framtidens samt möjliggör att få ordning på denna data.

Användandet av BIM i projekt Hallandsås i ett underhållsperspektiv
Den övergripande forskningsfrågan rörde användandet av BIM i projekt Hallandsås och om huruvida det använts i ett underhållsperspektiv. På denna fråga svarade A1 att skapandet av anläggningsbiblioteket är en sak som gynnat underhåll av Hallandsås men att det återstår att se hur detta används.

Användandet av BIM i projekt Hallandsås i ett underhålls- och långtidsperspektiv har enligt B1 bidragit till kostnadsbesparingar i form av att inte 1500 ritningar levererades. Med hjälp av dessa geometrimodeller så ger det större möjlighet att dokumentera underhållsarbeten än vad det gjorde i PDF-filerna.

A2 ville inte svara på den frågan då Trafikverket ännu inte har någon erfarenhet av det men beskriver att man idag ska kunna använda sig av BIM-modellerna vid inspektioner där man skall kunna gå i tunneln och använda exempelvis en läsplatta för att kartlägga läckage. Tanken är att det även skall gå att lägga in exempelvis hur mycket det läcker och så vidare.
Analys och diskussion

Syftet med denna delstudie var att undersöka huruvida BIM har använts genom hela livscykelperspektivet i Projekt Hallandsås och hur den information som genererats under arbetets gång levererats till underhåll samt undersöka hur denna information använts genom BIM i underhåll.

Alla tre som intervjuades beskrev att trots att BIM-metodik kom in i en senare fas i projektet så har användningen beskrivits som framgångsrik och har gjort att pengar och tid har kunnat sparas. Informationen samlades i ett objektsbibliotek som skapades. En annan fördel med användningen var att få en överblick över projektet och det gick att göra analyser gällande collisioner mellan olika objekt samt att själva modellerna gjorde det lättare att samverka över teknikområdena.

I intervjuerna beskrevs även nackdelar med att använda BIM i projekteringen av Hallandsåsen där en nackdel beskrevs vara att det tog tid och kostnad för att utveckla metodiken. För att förhindra det borde utvecklingen av BIM ske mer öppet och i större projekt (Hörberg, Jönsson, 2016). De erfarenheter som ett projekt ger, för- och nackdelar borde samlas och det borde finnas tillgängligt för andra.

Gällande det stora antalet förvaltningssystem så var det även något som påpekades i den tidigare studien. När det gäller leveransen av BIM-modeller till järnväg och tunnel så beskrev de tre som intervjuades liknande problematik, att tunnel önskade få dessa geometrimodeller medan järnväg önskade en mer traditionell leverans i 2D. På frågan varför gick svaren något isär. Att ansåg att järnväg inte avancerat lika mycket rent utvecklings-, teknik- och arbetsmässigt och att tunnel har ett enklare arbete samt att utvecklingen kommit längre. B1 beskrev att järnväg är mer avancerad än tunnel samt att det tar mer styr att vilken information som får läggas in och tar egentligen inte emot objektsorienterad information. A2 beskrev att järnväg, liksom spår och växel, inte kunde se fördelarna med arbetssättet men även att det handlade om teknikslag, att järnväg inte hade för vana att arbeta med modellfiler.

Inledningsvis i denna studie beskrevs målet med användandet av BIM inom Trafikverket, som innebär att: ”Anläggningsinformation ska med hjälp av BIM-metodik hanteras i ett livscykelperspektiv, för att information ska kunna hanteras och användas effektivt” (Trafikverket, 2014).

För att livscykelperspektivet skall kunna bli en realitet så beskrev B1 att Trafikverket behöver börja arbeta på ett annorlunda sätt, där underhåll är med redan från start. B1 betonar att underhåll inte är något som en projektör har i åtanke dagligdags. Genom att arbeta med BIM-metodik ges en bättre kvalitetsökade produkt och med fokus på Projekt Hallandsås så anser B1 att ambitionen bör ligga vid att bygga ett gemensamt underhållssystem där de olika förvaltarna länkas samman. I den
BIM-utopi som B1 presenterar finns en gemensam databas där det finns olika gränssnitt för att underlätta förvaltning, då enbart väsentlig information för ett exakt ändamål plockas ut. Ändrar man den informationen så skall den fortfarande vara knuten till de andra systemen som den informationen kan vara relevant för. I utopin öses information från samma källa, samma databas, där det är informationen som är källan, inte 3D-modellerna. Geometrin ska, enligt B1, vara kopplad till databasen.

3D-modellerna är ett sätt att visualisera information som finns lagrad och sorterad i databasen. Utifrån det som framkommit intervjuerna så finns det en stark tilltro till ANDA som tittar på livscykelperspektivet. Två av de som intervjuades ansåg att det är det arbete som ANDA utför som kommer att lösa detta med mängden förvaltningssystem och interoperabilitet.

Även A1 belyser att underhåll kopplas in först i slutet av projektering av en anläggning och för en livscykelhantering där underhåll skall kunna vara med i planering så kommer det att kräva en omorganisation av Trafikverket. Enligt A1 beskrivs underhåll ha näsan precis ovanför vattenytan när det kommer att till att hålla anläggningen i hyfsat skick och betonar att tekniken kommit längre fram än förvaltningen ute på plats och att samarbeten med att planera och underhålla tillsammans behöver förbättras.

Vad innebär användandet av BIM i Projekt Hallandsås i ett underhålls- och långtidsperspektiv? Syftet med denna fråga var att söka se huruvida det funnits ett proaktivt tänk gällande användningen av BIM för att BIM-metodik skall kunna användas även i ett underhållsperspektiv. Det som går att säga är att arbetet med BIM i Trafikverket har kommit långt inom planering och projektering men det går också att säga att det är en bit kvar innan man kommit lika långt i underhåll. Intervjuerna visade även även att Trafikverket har gjort kostnads- och tidsbesparningar genom att använda BIM i Projekt Hallandsås men Trafikverket behöver bli bättre på att samarbeta i de olika faserna i en byggprocess. Två av de som intervjuades belyste att ju tidigare underhåll kommer in i en byggprocess, desto bättre är det.

I Trafikverkets framtida arbete med BIM-metodik, i en tid där Trafikverket är beställare, så skall livscykelhantering fungera. En fråga som man då bör kunna svara på är: För att förvaltandet av ett BIM-projekt ska kunna vara effektivt, för att en underhållsplan ska fungera, vad behöver Trafikverket ha för information som beställare?
Referenser

Bilaga 3.1. Intervjufrågor

<table>
<thead>
<tr>
<th>Fråga</th>
<th>Antal</th>
</tr>
</thead>
<tbody>
<tr>
<td>I vilket skede av projektet skapades själva BIM-modellen/modellerna?</td>
<td>2</td>
</tr>
<tr>
<td>2. Hur har den information som skapats i BIM-processen levererats till underhåll?</td>
<td>3</td>
</tr>
<tr>
<td>3. Hur har denna BIM-genererade information sparats i samband med leveransen till underhåll?</td>
<td>4</td>
</tr>
<tr>
<td>4. Hur är denna information tillgänglig i ett underhållsperspektiv?</td>
<td>5</td>
</tr>
<tr>
<td>5. När underhåll av tunneln/järnvägen görs, visualiseras detta?</td>
<td>6</td>
</tr>
<tr>
<td>6. Målet med BIM i TRV har beskrivits att den ska hanteras i ett långtidsperspektiv för att informationen ska kunna hanteras och användas effektivt. Används eller kommer BIM att användas i ett långtidsperspektiv av tunneln?</td>
<td>7</td>
</tr>
<tr>
<td>7. Informationen som levereras till underhåll ska vara autentiskt, tillförlitlig men även användbar i ett långtidsperspektiv. Hur har man tänkt och gjort kring detta? Finns det sedan tidigare specificerat vilken information som behövs för att kunna användas i ett underhållsperspektiv av Hallandsåsen?</td>
<td>8</td>
</tr>
<tr>
<td>10. I vilken utsträckning används BIM i underhåll idag?</td>
<td>11</td>
</tr>
<tr>
<td>11. BIM möjliggör analyser då processen bygger på att samla information till en och samma modell. Görs exempelvis energi- och miljökonsekvensanalyser i BIM?</td>
<td>12</td>
</tr>
<tr>
<td>12. Vad innebär användandet av BIM i Projekt Hallandsås i ett underhålls- och långtidsperspektiv?</td>
<td>13</td>
</tr>
<tr>
<td>13. Finns det inga planer på att ha med förvaltning redan från planering? Ser du några fördelar med att ha med dem från start? Nackdelar?</td>
<td></td>
</tr>
<tr>
<td>Innehåll</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Abstract Sammanfattning</td>
<td>80</td>
</tr>
<tr>
<td>Inledning</td>
<td>81</td>
</tr>
<tr>
<td>Syfte och frågeställning</td>
<td>81</td>
</tr>
<tr>
<td>Metod</td>
<td>81</td>
</tr>
<tr>
<td>Litteraturstudier</td>
<td>82</td>
</tr>
<tr>
<td>Intervjumetod</td>
<td>83</td>
</tr>
<tr>
<td>Omvärldsanalyser</td>
<td>83</td>
</tr>
<tr>
<td>Transportsektorns utmaningar</td>
<td>83</td>
</tr>
<tr>
<td>Big data</td>
<td>85</td>
</tr>
<tr>
<td>Intelligenta transportsystem – ITS</td>
<td>87</td>
</tr>
<tr>
<td>Förarlösa fordon</td>
<td>88</td>
</tr>
<tr>
<td>Smarta städer</td>
<td>89</td>
</tr>
<tr>
<td>Internet of Things</td>
<td>90</td>
</tr>
<tr>
<td>Öppna data</td>
<td>90</td>
</tr>
<tr>
<td>Brister i användning</td>
<td>92</td>
</tr>
<tr>
<td>Den moderna myndigheten</td>
<td>93</td>
</tr>
<tr>
<td>Slutsatser</td>
<td>94</td>
</tr>
<tr>
<td>Referenser</td>
<td>95</td>
</tr>
</tbody>
</table>
Abstract Sammanfattning

De senaste årens teknologiska utveckling har inneburit en ökad mängd information. Denna ökade mängd information påverkar myndigheter på flera sätt och skapar såväl möjligheter som en rad svårigheter. Utvecklingen påverkar en rad olika sektorer, inte minst transportsektorn. Nya informationsteknologier för insamling av data såsom sensorstyrda bilar innebär att informationsmängden även fortsättningsvis kommer att öka markant under de kommande åren. För att kunna dra nytta av dessa nya teknologier krävs det att Trafikverket hanterar denna informationsmängd korrekt.

Studien använder sig i av två kvalitativa metoder: systematisk litteraturstudie och intervjumetoden. Omvärldsanalysen identifierar genom främst litteraturstudien en rad särskilda områden det finns både utmaningar och möjligheter till utveckling vad gäller informationshantering inom transportsektorn, exempelvis Big Data, ITS och öppna data. Här finns stora utmaningar vad gäller frågor om infrastruktur, säkerhet, kontroll, access och juridiska frågor. Att kunna hantera dessa utmaningar och dra fördelar av de möjligheter som finns i en ökad informationshantering är en viktig del i att vara en "modern myndighet". Det bidrar även till att öka effektiviteten i verksamheten, ger mer nytta för pengarna och bidrar till högre kvalitet i infrastrukturen.
Inledning

Syfte och frågeställning

Syftet med denna undersökning är att med ett arkivvetenskapligt perspektiv bidra till en ökad kännedom om de kunskaper som krävs för att bevara informationens värde i offentlig sektor. Målet är att genom en omvärldsanalys kunna identifiera nya möjligheter och utmaningar för Trafikverket utifrån informationshanteringsperspektiv. Avsikten är på så sätt att skapa en förståelse av den kontext inom vilket en modern transportmyndighet fungerar.

Den huvudsakliga frågeställningen lyder således: vilka möjligheter och utmaningar lyfts särskilt fram inom transportsektorn idag utifrån ett arkiv- och informationshanteringsperspektiv?

Genom att besvara den huvudsakliga frågan är förhoppningen att det skall bli lättare att se hur Trafikverket kan komma att påverkas av den digitala utvecklingen. I och med att denna studie bedrivs inom ramen för forskningsportföljen ”Trafikverket – en modern myndighet” är det också av intresse att undersöka hur begreppet ”modern myndighet” hänger samman med de utmaningar och möjligheter som finns inom transportsektorn.

Metod

Litteraturstudier

Sökningar jag genomfört i de två olika databaserna ASE och Emerald är i huvudsak uppbryggda efter dessa sökord i olika kombinationer (se nedan för exempel):

- Transport* AND information
- Transport* AND management
- Transport* AND records
- Transport* AND document
- Transport* AND digital*
- Transport* AND government*
- Transport* AND data
- Transport* AND planning
- Transport* AND Europe

Sökordet ”Transportation” gav i ASE 277 291 träffar. ”Transportation” och ”Records Management” gav däremot mer lättanterliga 576 träffar. Med hjälp av databasens avgränsning mot ”transportation” som ämne i databasen fick jag 32 träffar. Majoriteten av artiklarna var emellertid icke användbara för min avgränsning exempelvis *Analysis of taxi demand and supply in New York City: implications of recent taxi regulations*. ”Public transport” och ”planning” och ”management” gav 808 träffar. Genom att lägga till sökordet ”Europe” fick jag 79 träffar. Flertalet av dessa behandlade emellertid inte mitt forskningsområde så genom att avgränsa mig med hjälp av databasen gentemot artiklar med ”Transportation” som keyword fick jag 13 träffar. Återigen var flertalet för mig ointressanta, exempelvis *Social exclusion and transportation services: A case study of unskilled migrant workers in South Korea*. Genom att ta bort ”Europe” som keyword hittade jag däremot 4 artiklar som på något sätt behandlade information i transportsektorn mer direkt. Sökorden ”transport” och ”digital” och ”government” gav 166 träffar i ASE. Genom att använda databasens avgränsning mot ”transportation” som ämne fick jag 11 träffar. Dessa behandlade emellertid inte mitt forskningsområde så jag tog bort angränsningen mot ”transportation” och hittade utav de ursprungliga 166 träffarna två artiklar som var intressanta för min forskning, ”Information culture” och ”transport policy” gav 21 träffar. Den artikeln som låg närmast mitt forskningsområde var *Gauging interventions for sustainable travel: A comparative study of travel attitudes in Berlin and London* men den behandlade snarast resenärer.

Då det fanns vissa svårigheter att hitta relevant litteratur genom databaserna, framförallt på grund...

Intervjumetod

Omvärldsanalys

Transportsektorns utmaningar

För att hantera dessa utmaningar har den Europiska kommissionen gett ut ett White Paper om transport, Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system. Där finns totalt 40 konkreta initiativ för transportsektorns utveckling de närmsta årtiondena. 2050 är målet att utsläppen skall ha fallit med 60% samtidigt som beroendet av olja skall minskat. Särskilda mål är att inga fler bilar skall använda konventionella drivmedel, 40% mindre användning av koldrivna drivmedel i flyg och minst 40% mindre utsläpp inom sjöfart. Sommanfattningsvis är målet att använda "mindre energi, renare energi, och en bättre använd infrastruktur" (Diakaki et al. 2014).
Infrastruktur och nya teknologier är av största vikt för ett fungerande transportnät inom EU. Idag skapas, behandlas och lagras data på ett sätt som aldrig tidigare varit möjligt.

Den ökande mängden digital information tas också upp av Trafikverks omvärldsrappor. Denna ökade mängd anses både ha fördelar men också en baksida. Frågor om integritet, låg datakvalitet samt den ofta långsamma lagstiftningen tas upp som problemområden. Detta är också något Trafikverkets strateg nämner som utmaningar:

En annan utmaning för samhället [...] är lagstiftning, när tekniken utvecklas snabbt så är det svårt att hänga med korrekt lagstiftning kring hur man ska hantera nya tjänster och lösningar (Intervju, 2015)

För att möta transportsektorns utmaningar har också Vinnova tidigare arbetat med agendan *Nationell Kraftsamling Transport 2050* i samverkan med företag, branschorganisationer, institut, högskolor och universitet som är involverade i transportområdet. Sju områden där kunskapsunderlaget ansågs otillräckligt identifierades som särskilt nödvändiga:

- Mänskligt beteende, behov och välbefinnande
- Transportsystemet och system av system
- Ekonomi, styrning och långsiktighet
- Samhällsplanering och byggnad med fokus på mobilitet
- Dialog och kompetensbehov
- Energisystemet
- Teknikutveckling (Vinnova 2012, s.12-13.)

Figur 1. Från Färdplan för uppkopplade och samverkande transporter, Forum för Innovation i Transportsektorn

Big data

Till skillnad från öppna data, där objektivet är att tillgängliggöra offentlig data för en mängd olika användare är målet med Big Data-initiativ ofta att hjälpa organisationer utnyttja en stor mängd information inom deras databaser för att upprätta diverse målbilder exempelvis ökad produktivitet eller nya tjänster.

A data set may have many millions of pieces of data, but this does not mean it is random or representative. To make statistical claims about a data set, we need to know where data is coming from; it is similarly important to know and account for the weaknesses in that data. Furthermore, researchers must be able to account for the biases in their interpretation of the data. (Boyd & Crawford, 2012, s.668.)

Större data är inte nödvändigtvis bättre data. Grundläggande vetenskapliga frågor objektivitet, autenticitet och kontext måste därför även fortsättningsvis vara av fundamental vikt vid analys av stora datamängder.

Ett pågående initiativ är Big Automotive Data Analytics som Volvo Personvagnar genomför (t.o.m. 2017) med bidrag från Vinnova. Resultatet skall adressera utmaningar som moln-arkitektur med fokus på dataöverföring dels mellan olika parter och mellan olika arkitekturskikt; plattformer för strömmande data och realtidsberäkning/modellering; val av analysalgoritmer som passar till de villkor som ställs av projektets tillämpningar och data; samt affärs- och betalmodeller samt avtalsfrågor.\(^6\) Enligt Volvos förstudie har potentialen i Big Data endast nytjats minimalt men kommer spela en viktig roll i den framtida utvecklingen:

Den första avgörande aspekten av Big Data Analytics är utvecklingen av IT-infrastruktur och beräkningsplattformar som kan hantera de massiva datamängder och dataflöden vilka går under namnet Big Data [...] Den andra avgörande aspekten av Big Data Analytics är utvecklingen av matematiska algoritmer som effektivt kan analysera Big Data. I likhet med Data Mining så används Big Data algoritmer för att hitta nya användbara regelbundenheter i data. Skillnaden mellan Big Data Analytics och Data Mining är den att de algoritmer som används i Data Mining (eller för den delen också de som används generellt i Business Intelligence) inte är anpassade till den massiva omfattningen av datamängderna i Big Data [...] Big Data kommer att spela en viktig roll i den närmaste framtiden med utveckling mot till exempel självkörande fordon och trafikstyrning. Utvecklingen inom Big Data har bara börjat, och en av de stora utmaningarna just nu är att utveckla nya verktyg för att möjliggöra analys av de befintliga och massiva mängderna av data från fordon och trafik. Målsättningen med detta strategiska initiativ är att ta ett rejält steg framåt i förmåga att hantera de utmaningar som Big Data och Big Data Analytics. (Volvo 2014, s.4.)

Möjligheter för användning av Big Data Analytics finns enligt förstudien inom allt från trafikinformation och digital infrastruktur till betalningsmöjligheter och persontransportslösningar.

\(^5\) http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-really-matters
\(^6\) http://www.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/Big-Automotive-Data-Analytics-BADA-huvudstudie--fas-1/
OECD:s transportforum ser flera möjligheter med Big Data inom transportsektorn men har också identifierat ett flertal risker. För att säkerställa att informationen skall kunna vara förståelsebar och kontrollerbar spelar ett tidigt skapande av metadata en viktig roll:

Transparency regarding the nature of data and the conditions under which it was collected is crucial for data-driven transport policy making. In this respect, the initial recording and subsequent preservation of metadata plays an essential role in enabling data interpretation and re-interpretation. This metadata may include information on data structure, the context in which it was collected and how it was generated (e.g. its provenance). For sensor-based data, provenance data is especially important as the type of sensor platform may affect the representativeness of the data produced. (OECD, 2015, s.18.)

Trafikverket har stor erfarenhet av att hantera stora datamängder, men enligt en förstudie Volvo gjort åt Vinnova hävdas det att denna data inte kan klassas som Big data då den "ofta är strukturerad och inlåst". Trafikverket måste därför öka sin kunskap i allmänhet hur man kan utnyttja möjligheter som Big Data Analytics (Volvo, 2014).

Intelligenta transportsystem – ITS

Det finns således inte bara från Trafikverkets sida utan i stort sätt ett världsomspännande intresse för nya informationstekнологier inom transport. Flera av delarna i EU-projektet Horizon 2020,
världens hittills största satsning på forskning och innovation med en budget på 80 miljarder Euro skall gå till forskningsområden för att utveckla exempelvis "smarta, gröna och innovativa transporter" samt utvecklandet av nya information- och kommunikationsteknologier inom ITS\(^7\).

Förarlösa fordon

Vinnova har arbetat med en agenda för automatiserade transportsystem. Där slås det fast att Sverige skall inom kort ha en ledande position inom automatiserade transportsystem. Inom 2025 är tanken att det skall finnas "ett integrerat innovationssystem för produkter, processer och tjänster inom automatiserade transportsystem" (2013). Även om agenda vill "lyfta blicken mot hela transportsystemet" ges förarlösa fordon en särskild plats. Inom två år skall Volvo personvagnar testa självkörande bilar på Göteborgs gator\(^8\). Trafikverket deltar i projektet Drive Me och enligt Trafikverkets projektledare ligger det i linje med deras uppdrag att utveckla ett effektivt transportsystem:

"Självkörande (autonoma) bilar kan bidra till samhälleliga och ekonomiska fördelar, genom bättre trafikflöde, miljö och säkerhet [...] Idag har bilen blivit norm och tar alltmer plats i våra städer, vilket på sikt inte är hållbart. 98 procent av tiden du äger en bil står den parkerad och den tar 25 procent av vägynan i stadsmiljö. I en digitaliserad värld där vi istället använder autonoma bilar skulle fler kunna nytta en och samma bil och vi får vi ett helt annat flöde i transportsystemet. Detta frigör utrymme som kan användas för oss människor istället då behovet av parkeringsytor skulle minska."\(^9\)

Forum för Innovation i Transportsektorn har å sin sida lanserat en färdplan (2014) för uppkopplade och samverkande transporter. Med detta åsyftas trenden att "fordon, resenärer och gods blir uppkopplade och att tjänster som nytta uppkopplings lanseras i snabb takt". Det innebär att inte bara självkörande personbilar utan även exempelvis nya lösningar godstransporter och persontransporter möjliggörs. Detta kommer enligt färdplanen kräva "metoder för data mining för att kunna extrahera relevant och situationsanpassad information som levereras till människor och fordon i transportsystemet i nära realtid".

\(^7\) http://www.vinnova.se/sv/misc/Arkiv/Horisont-2020

\(^8\) http://www.ny teknik.se/nyheter/fordon_motore bil/article3902685.ece

Smarta städer

Den största användningen av Big Data inom transportsektorn är för tillfället trafikövervakning för vägar (Shi, Abdel-Aty 2015) Men ett annat område är så kallade smarta städer. Smarta städer har ingen entydig definition, men EU:s digitala agenda för 2020 beskriver det som en plats där traditionella tjänster och nätverk förbättras genom nya digitala lösningar och teknologier. En plats där samhällets funktioner kommunicerar och samverkar:

"The smart city concept goes beyond the use of ICT for better resource use and less emissions. It means smarter urban transport networks, upgraded water supply and waste disposal facilities, and more efficient ways to light and heat buildings. And it also encompasses a more interactive and responsive city administration, safer public spaces and meeting the needs of an ageing population." 10

Stockholm stad har nyligen blivit utsedda att leda EU-projektet GrowSmarter. Sweco, som var med under ansökningsprocessen, beskriver det som ett sätt för att hjälpa städer växa, samtidigt som de blir mer energieffektiva och attraktiva för invånarna. Energiförbrukningen och utsläppet från

transporter skall minska med 60 % i de utvalda områdena.11

Internet of Things

Internet of things beskrivs av forskningsprogrammet IoT Sverige som:

\begin{quote}
 [...] ett samlingsbegrepp för den utveckling som innebär att maskiner, fordon, gods, hushållsapparater, kläder och andra saker samt varelser (inklusive människor), förses med små inbyggda sensorer och processorer. Detta medför att dessa enheter kan uppfatta sin omvärld, kommunicera med den och på så sätt skapa ett situationsanpassat beteende och medverka till att skapa smarta, attraktiva och hjälpsamma miljöer, varor och tjänster: 12
\end{quote}

Intelligent mobilitet, eller ”smart” mobilitet, räknas på så sätt bli en megatrend inom transportsektorn. Innovate UK, det vill säga Vinnovas brittiska motsvarighets transportavdelning gjorde nyligen en studie där de etablerade en katalog över 200 transportrelaterade dataset. Nitton av dessa ansågs särskilt viktiga för den fortsatta utvecklingen av intelligent mobilitet:

A total of 19 datasets will likely drive the emergence of intelligent mobility: map data; weather; personal location data; network disruptions; planned events; real-time network capacity for people, vehicles & goods; public transport schedules; vehicle location data; fare and pricing data; sentiment data from service users and non-users; third party service usage data; and payment/transaction data.

(Transport Systems Catapult, 2015, s.22.)

Elva av dessa ansågs i dag vara otillräckliga och i några fall existerande ingen data.

Vinnova (2013) konstaterar i en fallstudie att IoT idag är en stark global trend och lyfter särskilt fram Kina som gott exempel inom flera branscher där Sverige ”måste kunna konkurrera globalt” bland annat intelligenta transportsystem.

Samtidigt Trafikverkets egen omvärldsanalys nämner IoT som ett exempel på ökade möjligheter till mer automatiserad datafångst och informationsspridning:

Data om exempelvis trafik, infrastruktur och luftkvalitet kommer att genereras via sensorer till exempel i fordon (’Internet of things’) och hämtas från ’molntjänster’ istället för genom fasta installationer. (Trafikverket, 2014b, s.47.)

Öppna data
Det finns ingen formell definition för begreppet öppna data men det används oftast för att beskriva digital information som är fri att använda utan restriktioner. Open Knowledge Foundation (OKF) definierar öppna data som ”Open Data is data that can be used freely, shared and built upon by

\begin{footnotesize}
\begin{itemize}
\item[12] http://www.iotsverige.se/
\end{itemize}
\end{footnotesize}
anyone, anywhere, for any purpose”. (McDonald & Léveillé, 2014, s.100). Den numera nedlagda E-delegationen definerade öppna data som ”information som tillhandahålls fritt, utan att betydande tekniska eller rättsliga begränsningar uppställs för hur den får utnyttjas” (E-delegationen, 2011, s.12).

Begreppet öppna data används ofta tillsammans, eller till och med som en synonym för begreppet PSI-data så som det definieras i det så kallade PSI-direktivet. PSI-direktivet, egentligen Europaparlamentets och rådets direktiv 2003/98/EG av den 17 november 2003 om vidareutnyttjande av information från den offentliga sektor, vilket definierar begreppet ”public sector document” som:

ingår bland annat Nationell vägdatabas (NVDB), Statliga vägdata (STVDB), Järnvägsdata, Bro- och tunneldata (Batman), Trafikdata (TMS), Olycksdatal och Tillfälliga framkomlighetsrestraktioner\(^{13}\).

Victoriainstitutet har i en rapport (2014) undersökt värden hos öppna data med utgångspunkt i myndighetens befintliga strategier. Projekten identifierade tre olika kundgrupper som får värde av öppna data: tredjepartsutvecklare; trafikanter och resenärer; samt, samhället. För att Trafikverkets öppna datatjänster skall skapa värde krävs dock att tjänsterna uppfyller en rad kriterier exempelvis att de erbjuds i format som är ändamålsenliga och funktionella och att de erbjuds i rätt detaljnivå.

Brister i användning

\(^{13}\) www.trafikverket.se/tjanster/data/oppna_data
Den moderna myndigheten

Trafikverket har identifierat en rad strategiska utmaningar för de närmsta kommande åren. De fyra första utmaningarna är inriktade på resultat i transportsystemet medan de två sista handlar om att utveckla kultur och arbetssätt som ska ge Trafikverket goda förutsättningar att genomföra sina uppdrag på ett effektivt, engagerat och innovativt sätt. Trafikverkets strategiska utmaningar 2012 - 2021 ser ut som följande:

- Ett energieffektivt transportsystem
- Väl fungerande resor och transporter i storstadsregionerna
- Effektiva transportkedjor för näringslivet
- Robust och tillförlitlig infrastruktur
- Mer nytta för pengarna
- Trafikverket - en modern myndighet (Trafikverket 2011)

Detta projekt tillhör som tidigare nämnt den sista portföljen.

För att kunna hantera den digitala utvecklingens utmaningar och utnyttja dess möjligheter krävs det enligt Trafikverkets strateg att man tar till vara på ny kunskap och nya teknologiska lösningar samtidigt som man skall fortsätta leverera nyttor utifrån de uppdrag som finns. Myndigheten skall "vara med i sin samtid och leverera kundnyttor utifrån dem uppdrag vi har".

Detta är även något som lyfts fram i Trafikverkets strategidokument:

> Medborgare och näringsliv ställer allt högre krav på att enkelt kunna ta del av information från myndigheter och att kunna kommunicera med myndigheter på ett effektivt sätt. Även regeringen ställer ökade krav på smidigt informationsutbyte mellan myndigheter och organisationer med målet att det ska bli ”så enkelt som möjligt för så många som möjligt”. Samtidigt ökar krav på att myndigheternas arbete effektiviseras. Det krävs en kontinuerlig utveckling av Trafikverket som myndighet för att möta dessa krav. Relationen till våra kunder är mycket viktig och måste utvecklas. Kunderna vill också vara mer delaktiga och kunna påverka beslut som berör dem. (Trafikverket, 2011, s.18)

För att kunna dra fördel av de möjligheter som har beskrivits ovan krävs det även att lagstiftning uppdateras. Det framgår både av litteraturen och under intervjun med Trafikverkets strateg. Det måste finnas en legal grund på plats då Big data förutsätter ofta en samverkan mellan ett stort antal aktörer som levererar data och tjänster. Detta ställer nya krav på exempelvis ägande- och nyttjanderätt (FFI, 2015). Som Volvo beskriver det så finns det en inneboende komplexitet i
myndigheternas skyldigheter enligt lag att tillhandahålla data och marknadens behov av att använda data som konkurrensmedel. (Volvo, 2014).

Slutsatser

Omvärldsanalysen har påvisat en rad särskilda områden där det finns både utmaningar och möjligheter till utveckling vad gäller informationshantering, exempelvis Big Data, ITS och öppna data. Mängden information som skapas ökar ständig, både sett till dess storlek och dess hastighet. Här finns naturligtvis stora utmaningar vad gäller frågor om infrastruktur, säkerhet, kontroll, access och, inte minst, juridiska frågor. Tanken med denna studie var inte att fördjupa sig i någon av utmaningarna utan endast identifiera dem och deras betydelse för den fortsatta utvecklingen inom transportsektorn. Men vissa områden verkar av allt att döma vara mer bekymmersamma än andra exempelvis frågor om kvalitet på data. Större data är inte alltid bättre data.

Transportmyndigheter som Trafikverket behöver därför, som OECD nyligen har påpekat, bli bättre på att kvalitetssgranska och säkerhetsklassa data för att bättre förstå den och hur den kan användas:

Big Data in transport is not immune from small data problems – especially those relating to statistical validity, bias and incorrectly imputed causality. Transport authorities will need to ensure an adequate level of data literacy for handling new streams of data and novel data types. Ensuring robust and persistent metadata with harmonised provenance will facilitate data usability audits. Big Data is often not clean. Lack of data quality may mean significant upfront costs to render the data useable. This should be factored into decision making processes. (OECD, 2015, s.6.)

Som tidigare nämnt krävs det enligt Stenmark och Jadaan (2010) inte bara att nya teknologier integreras med tidigare system utan att organisationen i fråga behöver lära sig fånga och använda informationen innan den kan bli värdefull. Detta är ett värdefullt perspektiv men tyvärr något som litteraturen, i min mening, litet för ofta tar för givet. Det handlar på så sätt mycket om att vara "modern" i meningen att man skall "hänga med i utvecklingen" samtidigt som man skall fortsätta "leverera nyttor till sina uppdragsgivare" och lära sig "använda informationen som en resurs" som Trafikverkets strateg uttryckte det under vår intervju. Ett förslag till vidare forskning skulle därför kunna vara hur begreppet "modern myndighet" inom Trafikverket kan återkopplas till studier av informationskultur, det vill säga en informationskultur där informationshanteringen innebär själva grunden för organisationens beslutfattande, eller som Oliver (2008) uttrycker det:

An information culture [...] as one that is conducive to effective information management where [...] the value and utility of information in achieving operational and strategic goals is recognised, where information forms the basis of organizational decision making and Information Technology is readily exploited as an enabler for effective Information Systems. (Oliver, 2008, s-364.)

Att kunna hantera utmaningarna ovan och dra fördelar av de möjligheter som finns i en ökad informationshantering är på så sätt en viktig del i att vara en "modern myndighet”. Det bidrar även till att öka effektiviteten i verksamheten, ger mer nytta för pengarna och bidrar till högre kvalitet i infrastrukturen.
Referenser

E-delegationen. (2013). Vidareutnyttjande av offentlig information. En vägledning för myndigheter,

Europeiska kommissionen (2011) Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system

Forum för Innovation i Transportsektorn (2014) Sammanfattning av färden för uppkopplade och samverkande transporter för ett säkert, effektivt och hållbart transportsystem

Oliver, G. (2008) ”Information Culture: exploration of different values and attitudes to
information in organisations”, i Journal of Documentation 64:3.

Trafikverket (2011) Trafikverkets strategiska utmaningar 2012-2021

Trafikverket (2014a) Nationell strategi och handlingsplan för användande av ITS.

Innehåll

Abstract/Sammanfattning 99
Introduktion 100
Syfte och frågeställningar 102
Metod 102
Ekonomiadministrationens ramar 103
 Lagar och andra bestämmelser 103
 Regleringsbrev och instruktion 104
 Registrering och arkivering/bevarande 105
 Trafikverkets ekonomiska struktur 107
Resultat intervjuer 110
 Trafikverkets ekonomiska struktur 110
 Ekonomistrukturen och informationsutbyte 113
 Relationen ekonomistruktur – arkivredovisning 116
Slutsatser 119
 Avslutande kommentarer 120
Referenser 121
 Bilaga 5.1: Intervjufrågor 124
 Bilaga 5.2: Trafikverkets klassificeringsstruktur 125
 Bilaga 5.3 Utdrag ur Trafikverkets informationshanteringsplan 126
Abstract/Sammanfattning

I Trafikverkets regleringsbrev för budgetåret 2015 tilldelas myndigheten pengar ur 17 olika anslagsposter. Ett detaljerat inflöde av medel, med tillhörande krav på användning och återredovisning ställer stora krav på mottagaren att hålla ordning på vad pengarna får användas till. Detta leder i sin tur till en komplex ekonomisk struktur, som förvisso innehåller mycket information men som samtidigt kan försvåra insyn och uppföljning.

Studien visar bland annat att det finns stora behov av och en efterfrågan på ekonomisk information från Trafikverket, både internt och externt. De detaljerade kraven på användning av statliga anslag och återrapportering gör Trafikverkets ekonomihantering komplex och svår att överbliicka. Myndighetens organisation och regleringsbrevets utformning, med bland annat skarpa gränser mellan områdena investering och underhåll, försårar en livscykelperspektiv när det gäller stora och kostsamma investeringar. Det i sin tur försårar möjligheterna både till uppföljning och till att göra en rättvisande samhällsekonomin kalkyl.

Introduktion

I det årliga regleringsbrevet (Statsliggaren, 2015) sätter regeringen ramarna för myndigheternas verksamhet och formulerar deras uppdrag. Mål och återrapporteringskrav anges liksom årets anslag i kronor, fördelat på olika anslagsposter samt villkor för användande av medel.

Statsredovisningen, statens koncernredovisning, utgör grunden och sätter ramarna för myndigheternas ekonomiska uppföljning och rapportering. Utfall ska rapporteras in månads-, kvartals- och årsvis och ska bestå av: anslagsavräkning, inom- och utomstatliga transaktioner, realekonomisk fördelning samt resultat- och balansräkning. (ESV, 2011)

Redovisningsprinciper, offentlighetsprincipen och organisationens ekonomisystem (affärssystem) är exempel på andra villkor som styr verksamheten.

Den finansiella redovisningen delas in i extern och intern redovisning, där den förra visar myndighetens affärer med omvärlden och den senare hur resurser fördelas och förbrukas inom myndigheten. (ESV, Internredovisning, 2013)

"En huvuduppgift för redovisningen är att samla in, klassificera och lagra data som behövs för intern och extern styrning av en myndighets verksamhet. Rapporter om kostnader och intäkter, ställning och likviditet för myndigheten totalt, budgetuppföljning (jämförelse mellan budget och redovisade värden) för en avdelning på myndigheten eller kostnader för ett särskilt projekt är exempel på information som man måste kunna ta fram med hjälp av myndighetens redovisning.” (ESV, Internredovisning, 2013)

En transparent ekonomisk redovisning innehåller alltså aktuell och detaljerad information om situationen på respektive enhet/avdelning i organisationen. Genom återkommande avstämningar, uppföljningar och justeringar kan verksamheten styras i önskad riktning.

Information är en viktig tillgång (grundläggande/helt väsentlig för effektiv drift) i alla organisationer. Den som har tillgång till aktuell och tillförlitlig information kan räkna med fördelar gentemot den som har mindre. Information och dokument har också ett stort bevisvärde.

Sahlén menar att information och dokumentation är strategiska frågor som "har sin naturliga plats i organisationens ledning och de måste integreras med verksamhetsutveckling och systemutveckling." Dokumenthantering och –lagring ska inte vara beroende av hur organisationen organiseras för stunden, utan vara den fasta kärna som verksamheten bygger på och kretsar kring. (Sahlén, 2005)

AIIM, Association for Information and Image Management, har formulerat följande grundläggande principer för en fungerande informationshantering:

"Information assets are corporate assets. This principle should be acknowledged or agreed upon across the organization otherwise any business case and support for IM will be weak.

Information must be made available and shared. Of course not all information is open to anyone, but in principle the sharing of information helps the use and exploitation of corporate knowledge

Information the organization needs to keep is managed and retained corporately. In other words the retention and archiving, of information. If you save a
I en organisation, som ofta arbetar med många olika verksamhetssystem, ställs stora krav på att informationen sprids i rätt kanaler till rätt personer. Ekonomisk information kan å ena sidan vara ett viktigt verktyg som behöver få spridning i verksamheten, å andra sidan kan det också innehålla känslig affärsinformation som inte får spridas.

Engvall och Samuelsson konstaterar i ”Förstudien – En effektiv digital informationshantering” att det behövs en ökad förståelse för informationens värde och nytta i Trafikverket”. (Engvall & Samuelsson, 2015, s. 25). Författarna konstaterar också att infrastrukturen har en lång livslängd, något som i hög grad även påverkar informationsbehovet. (2015, s. 27)

Ovanstående gäller inte minst de så kallade räkenskapshandlingarna, det vill säga ”allmänna handlingar som uppstår i statliga myndigheters bokföring och redovisning” (Lövblad, 2005, s. 7). För uppföljning och granskning av myndigheters verksamhet är dessa handlingar helt nödvändiga, men i normalfallet registreras de inte i ärendehanteringssystemet utan i ett separat redovisningssystem.
Syfte och frågeställningar

Denna rapport ingår som en del av forskningsprojektet "En effektiv digital informationshantering". Projektets huvudsakliga frågeställningar har identifierats genom en förstudie med samma namn (Engvall & Samuelsson, 2015).

Syftet med denna rapport är att undersöka hur Trafikverkets ekonomiska struktur (ekonomimodell) påverkar organisationens informationsflöden och informationshantering. Rapportens mål är att söka svar på följande frågor:

- Hur ser Trafikverkets ekonomiska struktur ut (kontoplan, redovisningsplan, processer, organisation, arbetssätt m.m.)?
- Är strukturen ett stöd eller ett hinder för informationsutbyte inom organisationen?
- Hur ser relationen ekonomistruktur – arkivredovisning ut?

Förhoppningen är att denna rapport kan bidra till ökad kunskap kring ovanstående frågor även utanför ekonomiavdelningen och därmed underlätta informationsöverföring inom Trafikverket.

Metod

Metoden som har valts för att försöka besvara forskningsfrågorna är en kvalitativ studie, bestående dels av en litteraturstudie – i form av en översikt av de lagar och andra bestämmelser som styr myndighetens verksamhet – dels av en intervjustudie.

De intervjupersoner som kontaktades bedömdes vara relevanta för studien utifrån deras respektive yrkesområden och funktioner. En inledande kontakt togs genom att ett antal i förväg formulerade intervjufrågor e-postades till de tänkta intervjupersonerna. Flera avböjde till en början att delta eftersom de utskickade frågorna bedömdes kräva större kunskaper i ekonomi/redovisning/bokföring än personerna tyckte sig ha. Eftersom deras medverkan var värdefull, användes frågorna i flera fall i stället som en intervjuguide.

De semistrukturerade intervjuerna gjordes alltså utifrån ett antal i förväg formulerade frågor, vilka redovisas i Bilaga 1. En semistrukturerad intervju kännetecknas bland annat av att samma frågor ställs till samtliga intervjupersoner, att ungefär lika lång tid sätts av till intervjuerna samt att frågorna är öppna – svarens riktning och karaktär varierar (Gillham, 2008, s. 103).

14 Se bilaga 1.
Intervjuerna pågick i 30–60 minuter och spelades in med intervjupersonernas kännedom och godkännande. Varje intervju transkriberades därefter i sin helhet innan nästa gjordes. Citaten återges i sammanställningen så långt möjligt ordagrant, dock har viss rensning gjorts av ofullständiga meningar, omtagningar etc. Intervjupersonerna har läst och godkänt sina respektive citat.

Ekonomiadministrationens ramar
Detta avsnitt innehåller en litteraturstudie i form av en översikt av de lagar, bestämmelser och andra faktorer som beskriver förutsättningarna för Trafikverkets verksamhet. Genomgången är avgränsad till ekonomiadministration. Avsnittet är uppdelat i följande underrubriker: Lagar och andra bestämmelser, Regleringsbrev och instruktion, Registrering och bevarande samt Trafikverkets ekonomiska struktur.

Lagar och andra bestämmelser
En statlig förvaltningsmyndighet som Trafikverket berörs av en mängd lagar och andra bestämmelser på olika områden. EA-boken 2015 innehåller bestämmelser som täcker in ekonomiadministrationens olika aspekter, bland annat förvaltning, finansiering, betalnings- och räntefrågor, redovisning, upphandling, revision och arkivvård (ESV, 2015)

Detta avsnitt ger en översiktlig bild av de lagar och bestämmelser som en förvaltningsmyndighet under regeringen har att förhålla sig till. Översikten begränsas till ett urval av de lagar och bestämmelser som rör det ekonomiadministrativa området.

I regeringsförfar (RF) 9 kap 1 § slås fast att det är riksdagen som beslutar om skatter och avgifter till staten samt om statens budget (SFS 1974:152). Av 9 kap 8 § framgår att ”regeringen förvaltar och förfogar över statens tillgångar” och i 9 § att det är riksdagen som ”beslutar om grunder för förvaltningen av och förfogandet över statens tillgångar”.

Bestämmelser för statens budget finns i budgetlagen (SFS 2011:203). I lagens 1 kap 3 § slås fast att ”i statens verksamhet ska hög effektivitet eftersträvas och god hushållning iakttas”. Lagen innehåller bland annat bestämmelser om budgetering (3 kap) inklusive villkor för ramanslag, uppföljning och prognoser (9 kap) samt redovisningsskyldighet och revision (10 kap).

För myndigheter under regeringen finns regler för årsredovisning, delårsrapport och budgetunderlag i förordningen för årsredovisning och budgetunderlag (SFS 2000:265).

Myndighetsförordningen (SFS 2007:515) omfattar förvaltningsmyndigheter under regeringen och innehåller bland annat regler för hur myndigheten ska styras, hur ärenden ska handläggas och hur beslut fattas. Förvaltningsmyndigheternas handläggning av ärenden, serviceskyldighet m.m. regleras också i förvaltningslagen (SFS 1986:223).

Trafikverket hör till de myndigheter som omfattas av förordningen om myndigheters bokföring (SFS 2000:606). Förordningen hävvisar till budgetlagens bestämmelser om redovisningsskyldighet och revision i 11 kap 2 §. Enligt förordningens 18 § är myndigheter skyldiga
att ha en systemdokumentation, dvs. en beskrivning av hur bokföringssystemet är uppbyggt och hur delarna hänger samman. Även en beskrivning av hur arkivering av räkenskapsmaterialet sker bör finnas. (ESV, 2011)

Myndigheter som omfattas av bokföringsförordningen, omfattas också av förordningen om statliga myndigheters redovisningssystem (SFS 1994:1261), som bland annat ålägger myndigheten att tillgodose Riksrevisionens krav på tillgång till data i systemet.

Regleringsbrev och instruktion

Regleringsbrev

När statens budget antagits av riksdagen meddelar regeringen myndigheterna hur budgetårets tilldelning av anslag ser ut i ett så kallat regleringsbrev. Regleringsbrevet kan sägas vara en verksamhetsbeställning, dvs. det som myndigheten förväntas arbeta med och leverera under året.

Trafikverkets finansiering för 2015 är enligt regleringsbrevet uppdelad i flera olika anslag (ramanslag), som i sin tur är uppdelade på ännu fler olika anslagsposter. Varje anslag har specificerade villkor för hur pengarna får användas. I återrapporteringskraven slås fast att...

”Trafikverket ska redovisa utfall och utgiftsprognoser för åren 2015–2019 för samtliga anslag, anslagsposter och delposter som myndigheten disponerar, inklusive äldre anslag och från EU-budgeten finansierade stöd till Transeuropeiska nätverk. Prognoserna ska kommentereras med avseende på avvikelser jämfört med tilldelat anslag, föregående prognos och föregående års utfall.”

(Näringsdepartementet, 2015)

Instruktion

Förutom genom regleringsbrevet styr regeringen myndigheterna genom den så kallade instruktionen, som innehåller verksamhetens ändamål, uppgifter och rapporteringskrav. (ESV, 2014)

Trafikverkets verksamhet och uppdrag regleras således genom förordning med instruktion för Trafikverket (SFS 2010:185), som bland annat säger att verket ska ”ansvara för den långsiktiga infrastrukturplaneringen för vägtrafik, järnvägstrafik, sjöfart och luftfart samt för byggande och drift av statliga vägar och järnvägar”.

104
Registrering och arkivering/bevarande

Offentlighets- och sekretesslagen slår i 4 kap. 1 § fast att ”en myndighet ska ta hänsyn till rätten att ta del av allmänna handlingar när den organiserar hanteringen av sådana handlingar och vid övrig hantering av allmänna handlingar” (SFS 2009:400).

Enligt lagens 5 kap. 1 § ska allmänna handlingar i normalfallet registreras så snart de kommit in till eller upprättats hos en myndighet. I 1 § tredje stycket sägs att ”handlingar som inte omfattas av sekretess behöver inte registreras om de hålls ordnade så att det utan svårighet kan fastställas om de kommit in eller upprättats”.

Andra sätt att hålla handlingar ordnade på är registrering i ekonomi-, löne- och personalsystem. Inom universitetsvärlden är studiedokumentationssystemet Ladok ett exempel. Allmänna handlingar som berörs av sekretess ska däremot alltid diarieföras, därför kan det bli aktuellt att diarieföra handlingar som normalt registreras i andra system.

”För registreringen av räkenskapshandlingar används i första hand redovisningssystem, men dessutom diarier. I de förra registreras de ekonomiska händelserna. I de senare registreras t.ex. avtal och annan korrespondens men också styrdokument för verksamhetens bedrivande.” (Lövblad, 2005, s. 9)

Vad räkenskapshandlingar är framgår av Riksarkivets föreskrift om gallring och utlån av räkenskapshandlingar, 2 §:

En mer specifik definition av räkenskapsinformation finns i bokföringsförordningens 3 §:

”a) Sådana sammanställningar av uppgifter som avses i

8 § (grundbokföring och huvudbokföring),
11 § (sidoordnad bokföring),
13 § (verifikationer),
14 § (handling m.m. som en verifikation hänvisar till),
18 § (systemdokumentation och behandlingshistorik),
19 § (årsredovisning),
20 § (specifikation till årsredovisning),
21 § (rapportering till statsredovisningen), samt
8 kap. förordningen (2000:605) om årsredovisning och budgetunderlag (delårsrapport)
b) avtal och andra handlingar av särskild betydelse för att belysa verksamhetens ekonomiska förhållanden, samt
c) sådana uppgifter i övrigt som är av betydelse för att det skall gå att följa och förstå de enskilda bokföringsposternas behandling i bokföringen."

(SFS 2000:606)

I förordningens 5 § finns en beskrivning av vad bokföringsskyldigheten innebär för myndigheterna. I punkt 4 slås fast att myndigheter ska...

"... bevara all räkenskapsinformation och sådan utrustning och sådana system som behövs för att presentera räkenskapsinformationen i den form som anges i arkivlagen (1990:782) och arkivförordningen (1991:446)"

(SFS 2000:606).

I Bilaga 3 finns ett utdrag ur Trafikverkets informationshanteringsplan som visar bevarande/gallringsfrister för räkenskapshandlingar.

I det följande avsnittet beskrivs kortfattat bestämmelserna kring bevarande av handlingar.

Verksamhetsbaserad arkivredovisning

Enligt Riksarkivets föreskrift RA-FS 2008:4 ska myndigheter "upprätta en arkivredovisning som gör det möjligt att
– förstå sambanden mellan verksamhet och handlingar
– överblicka handlingsbeståndet
– söka och ta fram handlingar, och
– hantera och förvalta handlingar." (Riksarkivet, 2008)

Processerna delas upp i lednings-, stöd- och kärnprocesser och för att kunna identifiera vilken information som tillkommer i processerna och var detta sker, krävs en kartläggning och genomlysning av verksamheten.

Enligt Myndigheten för samhällsskydd och beredskap (MSB) och Riksarkivet finns det här ett gemensamt intresse för de som arbetar med arkivfrågor och de som sysslar med informationssäkerhet: informationshantering:

"Vid processorierad informationskartläggning identifieras informationsmängder och de resurser som används för att hantera dem. I och med att informationen är satt i sitt sammanhang går det att se dess funktion i organisationen och därmed går det också att se vilket behov av skydd som finns på kort och lång sikt." (MSB och Riksarkivet, 2012, s. 29)
Riksarkivet ger rådet att också processer som inte avsätter några handlingar ska tas upp i klassificeringsstrukturen, då det kan bidra till en större förståelse för hur hela verksamheten ser ut.

Många myndigheter, där ibland Trafikverket, väljer att knyta samtliga ekonomihandlingar till en enda process, och däremed finns bara ett handlingsslag.

Riksarkivet påminner om att en sådan klassificering inte underlättar hantering och återsökning av handlingarna eftersom allt redovisas under samma beteckning (Riksarkivet, Beskrivning av verksamheten, 2013)

"Om samtliga ekonomihandlingar sammanförs till en enda process kan myndigheten ha behov av att istället redovisa handlingstyperna mer detaljerat för att kunna hantera exempelvis gallring. (Riksarkivet, Beskrivning av verksamheten, 2013)

Trafikverkets ekonomiska struktur
Organisation, arbetssätt och processer
Ekonomi och styrning är en av Trafikverkets centrala funktioner, funktionens uppbryggnad illustreras i Figur 2.
Figur 2 Organisationsskiss
Enligt den interna arbetsordningen har Ekonomi och styrning "funktionellt ansvar för samområdet Trafikverkets styrformer, arbetsformer och arbetssätt samt för styrprocessen Leda och styra och stödprocesserna Förbättra verksamhet, Hantera ekonomisk administration och Försörja med mark och lokaler." (TDOK 2010:113, 2015, s. 1)

Enligt Trafikverkets interna föreskrifter om arbetsordning (IFS 2015:3 TDOK 2010:14) är funktionens "leveranser" bland andra: verksamhetsplan inklusive budget; övergripande finansiell planering av Trafikverkets verksamhet; uppföljning och rapportering till ledning, styrelse och uppdragsgivare; ramverk för intern styrning och kontroll; samordnat och integrerat system för ledning och styrning; koordinering och rapportering av Riksrevisionens granskningar samt intern och extern finansiell redovisning inklusive bokslut.

Det sistnämnda uppdraget hör till arbetsuppgifterna för avdelningen Redovisning. Denna avdelning har också ansvaret för Trafikverkets ekonomimodell samt det ekonomiadministrativa systemet. (TDOK 2010:113, 2015, s. 3).

I ett utdrag ur Trafikverkets informationshanteringsplan (bilaga 3) redovisas hanteringen av myndighetens räkenskapshandlingar vad gäller bevarande och gallring.

Begreppet ekonomimodell

Inledningsvis ska sägas att syftet med denna rapport inte är att analysera och utvärdera ekonomimodellens uppbyggnad, utan snarare att genom intervjuer med icke-ekonomer undersöka modellens eventuella genomslag i Trafikverkets hela organisation.

Bokföringsexemplet i Figur 3 är hämtat från Trafikverkets interna rutinbeskrivning *Ekonomihantering av intäkter, bidrag och förskoteringslån* (TDOK 2014:0248, s. 8). Dokumentet är en detaljerad beskrivning av skillnader i ekonomihanteringen av olika typer av intäkter och lån.

Kodsträngen som illustreras i Figur 3 kallas ofta ekonomimodell och innehåller ett antal fält – dimensioner. Dessa dimensioner används för att kontera kostnader och intäkter, det vill säga styra dem till rätt ställe i den ekonomiska redovisningen.

Ekonomimodellen är uppbyggd dels utifrån Trafikverkets behov av att kunna redovisa hur tilldelade anslag har använts, dels utifrån behov som finns för den interna redovisningen.
Resultat intervjuer

Detta avsnitt är en sammanställning av de intervjuer som gjorts med fem anställda på Trafikverket samt med en anställd på Riksarkivet. Personernas olika arbetsområden och organisatoriska hemvist redovisas i Tabell 1.

Tabell 1 Personer som ingår i undersökningen

<table>
<thead>
<tr>
<th>Benämning i resultatredovisningen</th>
<th>Arbetsområde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervjuperson 1</td>
<td>Ekonomi och styrning, Trafikverket</td>
</tr>
<tr>
<td>Intervjuperson 2</td>
<td>Ekonomi och styrning, Trafikverket</td>
</tr>
<tr>
<td>Intervjuperson 3</td>
<td>Informationshantering, Trafikverket</td>
</tr>
<tr>
<td>Intervjuperson 4</td>
<td>Ledningssystem/styrning, Trafikverket</td>
</tr>
<tr>
<td>Intervjuperson 5</td>
<td>Internrevision, Trafikverket</td>
</tr>
<tr>
<td>Intervjuperson 6</td>
<td>Riksarkivet</td>
</tr>
</tbody>
</table>

Förutom ovanstående intervjupersoner har ytterligare en person på Trafikverket, i resultatredovisningen kallad Person A, bidragit med kunskap via e-post.

Redovisningen av intervjuerna struktureras i det följande avsnittet i enlighet med de tre frågorna som formulerades i rapportens syfte: 1) Trafikverkets ekonomiska struktur, 2) Ekonomistruktur och informationsutbyte och 3) Relationen ekonomistruktur – arkivredovisning.

Trafikverkets ekonomiska struktur

I regleringsbrevet för budgetåret 2015 tilldelas Trafikverket pengar ur 17 olika anslagsposter. (Näringsdepartementet, 2015, s. 4) Ett så detaljerat inflöde, med tillhörande detaljerade krav på återredovisning, ställer stora krav på mottagaren att hålla ordning på vad pengarna används till. Detta leder i sin tur till en komplex ekonomisk struktur, något som i sin tur kan försvåra insyn.

Enligt intervjuperson 2 är Trafikverkets ekonomimodell väldigt innehållsrik. Den innehåller bland annat kontoplanen, som talar om vad Trafikverket betalar för och vilka pengar som kommer in i verksamheten.
"Det är ju ett sätt att skära limpan på, och fånga information om den totala pengapåsen. Men den innehåller naturligtvis också information om var i organisationen de här kostnaderna och intäkterna uppstår."

(Intervjuperson 2)

I ekonomimodellen finns också information om tidredovisning, så att det går att följa upp hur individer har fördelat sin arbetstid. Projekt är ytterligare en dimension: Trafikverket håller reda på vilket projekt det är som kostat pengar, oavsett var i organisationen det har bedrivits. Modellen innehåller också information om vilket trafiksag som berörs (väg eller järnväg) samt hur verksamheten är finansierad. Begreppet arbetsorder är ytterligare en dimension som ingår i konteringssträngen. Arbetsordernumret är i sin tur en viktig informationsbärare, då det till varje arbetsorder finns kopplad metainformation som den enskilde medarbetaren alltså inte behöver hålla ordning på.

"Att beskriva Trafikverkets ekonomiska struktur i några korta termer är jättesvårt för det är en ganska komplex bild med många dimensioner."

(Intervjuperson 1)

Att Trafikverkets ekonomiska struktur ser ut som den gör beror enligt intervjuperson 1 på att den innehåller både externa krav och sådant som behövs för myndighetens interna uppföljning. Det finns en rak linje från det som i Trafikverkets modell kallas finansieringskod till anslagsposterna i regleringsbrevet eller någon av de andra finansieringsformerna som används, till exempel lån och avgifter. Varje enskild transaktion får redan från början en koppling till vilken finansiering den ska ha.

"Det här med hur anslagsposterna i regleringsbrevet ser ut och hur vår verksamhet är finansierad är ju ett strikt externt krav, det måste vi hålla reda på. Så det kan du följa rakt av, hela vägen in i redovisningen. Sedan kan det vara så att vi internt har behov av att dela upp en anslagspost i regleringsbrevet på två koder i vår redovisning för att vi behöver hålla isär det."

(Intervjuperson 1)

Intervjuperson 5 menar att begreppet ekonomimodell kan användas på två olika sätt: dels kan ordet beskriva själva bokföringssträngen som innehåller ekonomisystemets olika dimensioner, dels kan det användas i ett större sammanhang och då även omfatta styrmodell, styrprinciper, ledningssystem etc.

"Min generella bedömning är att det första ledet, alltså med ekonomimodell och räkenskaper, nog är ganska tillfredsställande. Framför allt så fungerar redovisning och hantering av räkenskaper väldigt bra inom Trafikverket. Men den senare delen, det här med styrmodell och så vidare, där finns det både brister och områden som vi måste bli mycket bättre på. Det finns också delar som vi kanske måste förenkla och göra mycket smartare när det gäller styrningen av Trafikverket. För vi har ju en del silos – en traditionell funktionell organisation där det kanske är svårt för processerna att flyta igenom organisationen på ett bra sätt."

(Intervjuperson 5)

När det gäller att skapa en lyckosam styrmodell är kommunikationen oerhört viktig, menar
intervjuperson 5. Och där har Trafikverket en av sina största utmaningar: medarbetarna upplever det som svårt att hitta den information som man behöver för att kunna sköta sitt jobb.

"Det kan ju vara så att vi har en alldeles fantastisk styrmodell och hur det är tänkt att fungera med processer, sakområden och funktionellt ansvar och så hår, men det hjälper ju inte om vi inte är bra på att kommunicera det här till medarbetarna.”
(Intervjuperson 5)

"Vi jobbar ju väldigt mycket med åtgärder ute i infrastrukturen: vi förbättrar, vi bygger bushållplatser, motorvägar, järnvägar, broar och så vidare. /…/ Skulle man ha fått en bättre integration mellan åtgärdsplanering och ekonomimodell så skulle det vara lättare i slutändan, när vi har vår planeringsprocess och budgeteringsprocess, att fördela pengar till de aktiviteter som vi har prioriterat som viktigast och som ska genomföras.”
(Intervjuperson 5)

En brist som intervjuperson 5 noterar är att det inte finns någon bra koppling mellan räkenskaperna och Trafikverkets avtal med leverantörer. Ett exempel är att det är svårt att följa upp hur mycket ett ramavtal har utnyttjats. Förändringar har föreslagits och internrevisionen bevakar att något kommer att göras.

Även intervjuperson 3 nämner att det finns problem när det gäller återsökning och ekonomisk uppföljning:

"Vi har ju fått en del förfrågningar som gäller uppföljning av ekonomin i projekt. Och det har varit väldigt svårt att ta fram material åt dem som undrar den typen av frågor. Det känns som att om man skulle undersöka de här frågorna så har vi på arkivsidan svårt att veta vad det är vi ska plocka fram. Vi har inte den typen av återsökningssmetadata.
(Intervjuperson 3)

Ytterligare ett område som intervjuperson 5 inte tycker att Trafikverket är särskilt bra på är "livscykeltänk”. Risken finns, både när man bygger nytt och när man planerar underhåll, att man tänker kortsiktigt. Ett exempel är asfalt, som enligt intervjuperson 5 kan vara bra och så kan den vara bättre. När en ny väg ska byggas och man väljer en asfalt som håller i tolv år i stället för åtta, då blir kostnaden högre för själva anläggningen men lägre för underhållet. Och vice versa om man väljer en billigare asfalt. Men idag finns inget bra sätt att följa en investering från planering till avveckling och det har delvis historiska orsaker:

"Vi är ju väldigt detaljstyrda från finansdepartementet, av regeringen och riksdagen. Och det är ju historiskt betingat, att man inte har det förtroendet för bland annat Trafikverket som kanske borde vara självklart. Och det leder
till att man är vildigt styrande i att bestämma hur mycket pengar som ska gå
 till nybyggnation, alltså investering, och hur mycket som ska gå till
 vidmakthållande, alltså underhåll. Och vi kan inte föra över pengar mellan
 de här områdena.”
(Intervjunperson 5)

Ekonomistrukturen och informationsutbyte

Arbeitsorder är som nämnts ovan ett centralt begrepp i Trafikverkets ekonomiska struktur. Enligt
intervjuperson 2 läggs en arbetsorder upp (skapas) under kontroll av en controller eller ekonom
ute i verksamheten. Arbetsordern kontrolleras sedan igen på en mer övergripande nivå för att
säkerställa att alla kopplingar till den är korrekta.

Tanken med systemet är att enskilda medarbetare inte ska behöva hålla ordning på hur exempelvis
finansieringen ser ut när tidredovisningen ska göras. Medarbetaren får ett antal i förväg
konstruerade arbetsordrar av sin chef som täcker in de arbetsuppgifter som medarbetaren har. På
så sätt hamnar kostnader och intäkter på rätt ställe utan att varje enskild behöver hålla ordning på
annat än arbetsordernumret.

"De behöver inte hålla reda på det här [finansiering etc.], utan jag har mina tio
olika arbeten att välja på när jag ska tala om vad jag gjorde de här timmarna,
så gör man det. Och det är en stor fördel, för det är inte möjligt att 7 000
medarbetare ska hålla reda på alla de här dimensionerna."
(Intervjunperson 2)

I varje nystartat projekt definieras ett antal arbetsordrar som ska täcka in just den verksamheten.
När det gäller den löpande verksamheten är arbetsordrarna enligt intervjuperson 2 mer
beständiga, de förändras inte över åren utan rullar på. En arbetsorder ska enligt intervjuperson 2
läggas upp av någon "som har tillräcklig kunskap och kompetens om vad det innebär". Det finns
också en central administration som gör en kvalitetskontroll innan arbetsordern matas in i
systemet.

Eftersom Trafikverket bland annat skiljer på investering/byggande och underhåll är arbetsorderns
livslängd begränsad till exempelvis byggfasen. När objektet är färdigbyggt övergår det i ett nytt
sammansättning och arbetsordern används inte mer.

"Vi skiljer ju på olika typer av finansiering och olika typer av verksamhet. Du
planerar, projekterar, handlar upp en entreprenad, bygger och så säger du
'klart, nu släpper vi på trafiken!' Då släpper det där [arbetsordern] för då
hamnar det i ett underhållssätt där du förmodligen tittar på en lite längre
sträcka, eller ett större sammansättning.
(Intervjunperson 2)

Den ekonomiska redovisningen skiljer alltså strikt på olika typer av aktivitet. Liksom
intervjuperson 5 konstaterade ovan finns inget livskostnadsperspektiv i den ekonomiska
redovisningen: när exempelvis en bro är färdigbyggd övergår den från anläggning till underhåll,
och det finns ingen överbryggande funktion däremellan.

Ekonomistrukturens (-modellens) upphävning är som redan nämnts konstruerad för att möta
både externa och interna krav på information. Men enligt intervjuperson 3, som arbetar med
Informationshantering inom Trafikverket, lever ekonomi lite sitt eget liv – i ett separat system:

"Det känns som att det finns många ekonomiska begrepp, vi har ju 'uppdrag' och 'arbetsordernummer' och andra saker som skulle kunna hålla ihop information som man är intresserad av, men det finns inget riktigt som fungerar för oss och som vi kan använda för att följa informationen: ."

(Intervjuperson 3)

Intervjuperson 3 menar att det hade varit bra om det gått att koppla ihop informationen i diarieförda ärenden med annan projekttinformation och information från ekonomisystemen. Men i nuläget vet intervjuperson 3 inte hur detta skulle lösas i praktiken.

Ekonomisystemet är alltså inte kopplat till ärendehantering och diariet, och systemet med arbetsordernummer som centralt begrepp tycks inte ha slagit igenom. Enligt intervjuperson 3 råder tvärtom en viss förvirring kring olika typer av nummer som används inom ekonomiadministrationen. Det är inte alls självklart att informationshanterare förstår innebörden av numren och hur de bör användas.

"När det gäller ärenden som tillhör ett investeringsprojekt så har vi ändå försökt att man ska skriva projektnummer, och det är kanske oftast uppdragsnumret eller arbetsorder, men vi vet inte riktigt. Och det finns andra typer av nummer... så jag tror att det är väldigt olika hur det ser ut och vad man använder för nummer, och vad det står på dokumenten..."

(Intervjuperson 3)

"Ibland finns det något som heter entreprenadnummer, det finns objektumnum, eller fanns i alla fall och det finns något som heter åtgärdsnummer, som är mer på planeringssidan tror jag. Det är alltså väldigt förvirrat och vi vet inte riktigt vad det är vi ska ange för något som kan vara intressant för återsökning."

(Intervjuperson 3)

Riksrevisionen har vid flera tillfällen kritiserat Trafikverket för brister i uppföljningen och för att det är svårt att bedöma hur effektivt resurserna används. Enligt Intervjuperson 2 var kritiken delvis ogrundad, då Riksrevisionen också blandat ihop begreppen:

"Man [Riksrevisionen] uttryckte sig lite olyckligt då om att man på Trafikverket inte kunde följa de enskilda projekten. Men det är inte sant för det var just precis det man kunde. Man kunde verkligen följa de enskilda projekten in i detalj, men man kunde inte följa det enskilda kontraktet in i detalj på det sättet som de försökte göra."

(Intervjuperson 2)

Enligt Intervjuperson 1 har förstås den enskilde projektledaren "full koll på det enskilda kontraktet", men på en aggregerad nivå gick det tidigare inte att på ett enkelt sätt få en sammanställning av vad som handlats upp och vad den totala kostnaden blev. Efter Riksrevisionens kritik har kraven på Trafikverkets återrapportering ändrats:

"Vi har skruvat – och vi skruvar. En av anledningarna till det är ju att även regeringen läser Riksrevisionens rapporter och som en konsekvens krever regeringen plötsligt att vi skulle göra en kontraktsåterrapportering."

(Intervjuperson 1)
Intervjuperson 5 nämner IT som ett annat område där det är svårt att göra uppföljningar av de faktiska kostnaderna.

"Jag vet att IT brukar tycka att det är svårt att utläsa hur mycket IT kostar i Trafikverket. Det finns ju en del i den centrala IT-verksamheten, men det finns också många av IT ute i våra olika projekt och det kan man inte fänga upp riktigt centralt. Vi kan inte rakt av säga en siffra att Trafikverket spenderar X antal kronor på IT varje år, utan det blir väldigt mycket uppskattningar."

(Intervjuperson 5)

Intervjuperson 1 upplever att ekonomi [avdelningen] försöker att leva upp till och motsvara alla de krav och förväntningar som finns på att återrapportera verksamheten ur olika perspektiv, men att det ändå inte bedöms som tillräckligt.

"Vi försöker att hitta en modell där man kan skära limpan på alla de ledder som kan behövas för att kunna svara på frågor eller rapportera.

(Intervjuperson 1)

Enligt intervjuperson 1 är Trafikverkets ekonomistruktur väldigt komplex, men det finns skäl till att det ser ut som det gör.

"Vi blir ofta beskyldda för att ha en komplicerad ekonomihantering, och jag brukar säga att vi har den komplexitet som krävs. Ge oss en enklare ekonomisk tilldelning och enklare återrapporteringskrav så ska vi nog se till att vi kan få en enklare ekonomihantering."

(Intervjuperson 1)

" Dessutom skulle jag vilja säga att den interna styrningen och organisationen komplicerar det här ganska mycket. Vi har vissa verksamheter som ska planera verksamheten och andra som ska genomföra den. Det ska gå att hålla ihop det här från ax till limpa, åtminstone när det gäller att planera och genomföra investeringsprojekt. Det där komplicerar det hela."

(Intervjuperson 1)

På grund av den komplexa ekonomihanteringen har Trafikverket enligt Intervjuperson 1 sedan länge arbetat med fasta rapporter, som körs ut av ekonomiavdelningen och delges verksamheterna. På så sätt har ekonomiavdelningen kunnat gå i god för att sifferunderlagen är korreka. Däremot är inte systemet ett bra stöd för någon djupare analys ute i verksamheten. Det är inte säkert att de som får underlagen faktiskt förstår vad de ser, utan behöver stöd av en controller, som finns på alla nivåer i organisationen, för att analysera sifforna.

Enligt Intervjuperson 2 analyseras verksamheten i Trafikverket fortlöpande genom de rutiner för uppföljning, avvikelsehantering och prioritering som finns. Med stöd i dessa gasas och bromsas det i verksamheten för att få pengarna att räcka till.

"Sedan finns det naturligtvis mer drivna ekonomer, både centralt och ute i verksamheten, som har förmågan att gå direkt in i ekonomisystemet och ställa sina egna frågor och vrida och vända på sifforna. Men då bygger det på att man kan tillräckligt mycket."
Ett helt nytt verktyg, "Rapportstöd till linjechefer", lanseras enligt intervjun i Trafikverket under hösten.

"Det är ett försök att skala ner den ekonomiska informationen till det som faktiskt är bra att se och förstå för en chef, i sin roll som chef i linjen.

Informationsen ska göras tillgänglig i ett webbaserat verktyg, som även personer utan ekonomisk utbildning ska kunna navigera i. Enligt intervjun i Trafikverket är syftet med verktyget att göra den ekonomiska informationen mer lättillgänglig och mer lättbegriplig för fler. Sedan tidigare finns också en central supportfunktion för ekonomifrågor, som stöd för organisationen när det gäller att förstå ekonomisk information och framför allt hur olika typer av händelser och transaktioner ska hanteras.

Relationen ekonomistrukturen – arkivredovisning

Trafikverkets informationshanteringsplan innehåller över 400 olika handlingstyper (objekt). Planen innehåller också en kort beskrivning av handlingstypen, dokumenttyp, information om bevarande/gallring, till vilken del i ledningssystemet (på olika nivåer) som handlingen hör hemma, information om diarieföring, hantering/lagring mera.

I Trafikverkets klassificeringsstruktur (Trafikverket, 2015) (e-post 2015-09-08, se bilaga 2) finns exempelvis stödprocesserna 2.5 Hantera ekonomisk administration och 2.10 Genomföra inköp och upphandling. Stödprocesserna är alltså identifierade, men det finns inga processbeskrivningar. Detta är enligt intervjun i Trafikverket inte något ovanligt.

"Oftast gör inte myndigheterna det, för det finns ju krav som är så pass detaljerade och strikta hanteringsregler (antingen utifrån annan lagstiftning eller systemrelaterade krav) – som inte har med Riksarkivet att göra utan som kommer från annat håll – som gör att det inte finns behov av att öka detaljeringsgraden i processbeskrivningarna. /…/ När vi säger att man ska göra processbeskrivningar så har vi sagt att man ska koncentrera sig på kärnverksamheten, för det är ju det viktigaste trots allt.

Inför Trafikverkets bildande gjordes enligt intervjun i Trafikverket ett grundligt arbete för att sätta upp rutiner, system och arbetsätt, men en processkartläggning på det ekonomiadministrativa området har inte ansetts "vara jätteprioriterat".

"Ekonomimodellen och ekonomistrukturen är ju absolut processuell, den följer en process. Men att fånga de rutiner som finns inom det ekonomiadministrativa området... det är ju inte en del i en kedja på det sättet."
Intervjuperson 1

Person A menar att ledningssystemet med processer och ekonomi lever åtskilda, med arbetsordernumren som enda koppling och det kopplar framför allt kostnaden till ett visst projekt eller liknande. Ekonomin bygger alltså strikt på en kontoplan och ger ingen koppling till vilken process som utfört aktiviteten.

"Idag är uppföljningen ett problem och den görs egentligen bara ur ett strikt "excelarkperspektiv", dvs. ingen funderar över varför eller vad som har hänt utan stirrar bara på siffrorna i sig. En koppling mellan processen och ekonomin hade onekligen varit önskvärd."

(Person A)

Intervjuperson 4 framhåller att det även utan koppling mellan ekonomiadministration och ärendehantering går att skapa ordning och reda i ärendena. Fakturahanteringen har exempelvis en egen nummerserie och det finns ett flöde i det systemet som fungerar.

"Sedan finns det ju andra bitar, som attestdelegeringar, men det har vi ju skrivna dokument för i vårt ledningssystem, så det har vi också någon slags ordning och reda på. Optimalt skulle man ju ha allting i samma system, men jag vet inte om det är optimalt heller. Då kanske det blir så tungt att det inte blir bra.

Intervjuperson 4

Intervjuperson 6 menar att det vore "intressant" om handlingar som uppstår i ekonomiprocessen kunde kopplas till övriga handlingar i ärendet. Det vore alltså önskvärt med en tydligare koppling mellan ekonomiinformation och annan information i arkivredovisningen.

"För det är ju så att man vill se informationen samlad och gärna kring de processer som förekommer hos myndigheterna..."

Intervjuperson 6

Enligt intervjuperson 6 ställs samma krav på myndigheternas samtliga handlingar, oavsett vilken avdelning de kommer från.

Intervjuperson 6

Intervjuperson 6 ser för tillfället inte något behov av att ändra på några regler vad gäller bevarande av ekonomimaterial. Däremot behöver Riksarkivet i sin tillsynsverksamhet ofta påminna om att ekonomiinformationen ska hanteras utifrån samma regelverk som övriga handlingar.

"Tidigare när man har gjort en arkivredovisning så har man ju klumpat ihop all ekonomiinformation till en serie. Och nu när man har processorierad arkivredovisning så är det
många som blir lite förvirrade. I och med att det är en stödprocess så finns ju ekonomiinformation tillhörande i varje process. Ska man hantera ekonomiinformationen för sig, eller ska man ha handlingarna kopplade till respektive process.”
Slutsatser

I detta avsnitt sammanfattas och diskuteras resultaten från litteraturstudien och intervjuerna uppdelat under rubrikerna 1) Trafikverkets ekonomiska struktur, 2) Ekonomistrukturen och informationsutbyte och 3) Relationen ekonomistruktur – arkivredovisning.

1. Trafikverkets ekonomiska struktur

Trafikverket är en förvaltningsmyndighet vars verksamhetsområde kan sägas vara grundläggande för ett väl fungerande samhälle. Verksamheten tillförs stora summor pengar och vi påverkas alla av hur verksamheten fungerar: allt från utfallet av investeringar i stora infrastrukturprojekt till informationstavlan på Perrongen som upplyser om tåget är i tid.

Enligt en av intervjupersonerna från Ekonomi är fördelen med Trafikverkets ekonomimodell att den enskilde medarbetaren inte behöver tänka på alla olika dimensioner som hanteras. En nackdel är att det i stället blir många olika arbetsordernummer att hålla ordning på.

Intresset för ekonomiinformation är väldigt stort och avdelningen försöker tillgodose alla behov. Intervjupersonen från ekonomi säger: ”Vi lever nog egentligen upp till de allra flesta informationsbehov som finns, men å andra sidan blir informationen ganska svårnavigerad, svårtillgänglig. Svårbegriplig kanske till och med vissa skulle säga.”

Behovet att ”skära limpan på alla olika ledder” som ekonomipersonen säger, skulle alltså leda till att informationen blir svår att ta till sig. Behov finns möjliga att anpassa informationen till olika intressenter, som har olika förkunskaper och syften med att efterfråga informationen.

2. Ekonomistrukturen och informationsutbyte

Intervjupersonen som arbetar med internrevision uttrycker att det finns stupröer (silos) i verksamheten som hindrar processerna att flyta obehindrat genom organisationen. Stupröen kan visa sig även på andra områden, exempelvis när det gäller att arbeta tillsammans över enhets-/avdelningsgränser.

Ett exempel är att det från dokumenthanteringshåll tycks råda viss förvirring kring de olika typer av nummer – till exempel projektnummer, arbetsordernummer, entreprenadnummer, åtgärdsnummer och uppdragsnummer – som förekommer inom ekonomiadministrationen. Dokumenthanteringen vet inte alltid vilken typ av nummer det är och hur det bör användas.

I Trafikverkets ekonomiska redovisning görs en strikt åtskillnad mellan olika typer av aktiviteter, något som bland annat styras av villkoren för de olika anslagsposterna i regleringsbrevet. En konsekvens blir en avsaknad av livskostnadsperspektiv i den ekonomiska redovisningen, något som i sin tur försvårar uppföljning och genomlysning av en anläggnings totala kostnad.
3. Relationen ekonomistruktur – arkivredovisning

Intervjupersonen från Riksarkivet tycker att det vore intressant och önskvärt med en tydligare koppling mellan ekonomiinformation och annan information i arkivredovisningen. Det skulle vara en fördel att samla ihop informationen, gärna kring myndighetens processer.

Avslutande kommentarer

Normalt registreras inte löpande räkenskapshandlingar (fakturor, in-/utbetalningar etc) tillsammans med övriga handlingar i ett ärendehanteringssystem, utan bokförs i ett separat ekonomisystem. Bokföring i sig handlar om registrering och avstämning och beroende på verksamhetens omfattning sammanställs månads-, kvartals och årsrapporter (bokslut).

Bokföringslagen (privat ägda företag) och förordningen om myndigheters bokföring sätter ramarna för hur den ekonomiska redovisningen och uppföljningen ska gå till. Att registrera fakturor även i ett ärendehanteringssystem skulle medföra ett dubbelarbete med oklar ekonomisk nytta: inte förrän verksamhetens intäkter och kostnader sammanfattats är det möjligt att bedöma hur verksamheten går.

Däremot kunde det finnas andra vinster med en dubbelregistrering, exempelvis en ökad löpande (och mer direkt) insyn i hur myndigheten använder sina pengar. Viktigt att komma ihåg i sammanhanget är att även en inkommens faktura (och bokföringen) i normalfallet är allmän handling, och det är fullt möjligt även med nuvarande system att exempelvis få veta vilka inköp som gjorts.

Sedan digitala ekonomisystem samt ärende- och dokumenthanteringssystem införts finns goda möjligheter att utbyta information även mellan system. Ytterligare studier av för- respektive nackdelar med att koppla ihop systemen behöver göras för att bedöma nytan.
Referenser

Bilaga 5.1: Intervjufrågor

Intervjufrågor område Ekonomi – ledning/styrning

4. Kan du beskriva Trafikverkets ekonomiska struktur (kontoplan, redovisningsplan, organisation, arbetssätt etc)?

5. Vilka fördelar resp. nackdelar tycker du att denna struktur har?

6. Är strukturen ett stöd eller ett hinder när det gäller uppföljning av verksamheten?

7. Hur ser samstämmigheten ut mellan anslagsposterna i regleringsbrevet och Trafikverkets redovisningsplan?

8. Är processkartläggning (inkl dokumentkartläggning och fastställande av dokumentplan) gjord på det ekonomiadministrativa området?

9. Vilka samband finns mellan processerna och den ekonomiska redovisningen?

11. Hur påverkar ekonomistrukturen informationshanteringen
 – internt?
 – externt?

12. Påverkar ekonomistrukturen Trafikverkets övergripande systemstruktur (informationsarkitektur, IT-system, planering för informationshantering etc)?
Bilaga 5.2: Trafikverkets klassificeringsstruktur
E-post från Arkivcentrum (@trafikverket.se), 2015-09-08

1 Leda och styra
 1.1 Planera strategiskt
 1.2 Planera verksamhet
 1.3 Följa upp, utvärdera och agera

2 Stödja verksamheten
 2.1 Hantera IT
 2.2 Förbättra verksamhet
 2.3 Forska och utveckla innovationer
 2.4 Kompetonsförsörja
 2.5 Hantera ekonomisk administration
 2.6 Tillhandahålla grunddata om transportsystemet
 2.7 Informera och kommunicera
 2.8 Försörja med mark och lokaler
 2.9 Materialförsörja
 2.10 Genomföra inköp och upphandling
 2.11 Hantera kundärenden
 2.12 Utveckla och utforma system- och teknikkrav

3 Förvalta och utveckla transportsystemet
 3.1 Planera åtgärder
 3.1.1 Externt dialog och samhällsplanering
 3.1.2 Analysera och utreda nuvarande och önskat läge
 3.1.3 Ta fram planer för transportsystemet
 3.1.4 Omsatta planer och följa upp
 3.2 Planera trafik
 3.2.1 Utvärdera behov av trafik
 3.2.2 Skapa och beskriva förutsättningar för planering
 3.2.3 Skapa planer, reglera och följa upp trafik
 3.3 Underhålla
 3.3.1 Leda och styra underhållsprojekt
 3.3.2 Kontrollera och underhålla anläggning
 3.4 Investera
 3.4.1 Leda och styra investeringsprojekt
 3.4.2 Formella samråd
 3.4.3 Planläggning
 3.4.4 Hantera tillstånd och avtal
 3.5 Trafikleda och trafikinformerar
 3.5.1 Trafikleda och trafikinformerar i normalläge
 3.5.2 Trafikleda och trafikinformerar vid avvikelse
<table>
<thead>
<tr>
<th>Handleidingstyp (objekt)</th>
<th>Beskrivning handlingstyp</th>
<th>Diari e-föring</th>
<th>Inkom men/u prätt ad</th>
<th>Bevarande/ gallring</th>
<th>Länk till gallringsb eslut</th>
<th>Listhantering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Årsredovisning</td>
<td>Årsredovisning samt specifikation till årsredovisning. 19 § FBF och 2 kap. 4 §, 10 kap. 1 § FÅB, 20 § FBF.</td>
<td>Uprät tad</td>
<td>B e v a r a s</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Årsbokslut</td>
<td>Årsbokslut med specificationer</td>
<td>Uprät tad</td>
<td>Bevaras</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Bokslutsinstruktioner</td>
<td></td>
<td>Uprät tad</td>
<td>Bevaras</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Budgetunderlag</td>
<td>9 kap. 3 § FÅB</td>
<td>Uprät tad</td>
<td>Bevaras</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Beräkningsunderlag</td>
<td>9 kap. 3 a § FÅB</td>
<td>Uprät tad</td>
<td>Bevaras</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Särskild rapport för regeringens fördjupade prövning av verksamheten</td>
<td>9 kap. 4 § FÅB</td>
<td>Uprät tad</td>
<td>Bevaras</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Verksamhetsplan</td>
<td>10 kap. 3 § FÅB</td>
<td>Uprät tad</td>
<td>Bevaras</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Handlingar av särskild betydelse för att belysa verksamhetens ekonomiska förhållanden</td>
<td>3 § 4b FBF. Omfattar regleringsbrev, avtal, beslutshandlingar, bevis, lånehandlingar, fordringar, investeringar, försäkring, förvaltningsuppdrag,</td>
<td>Inkom men, Uprät tad</td>
<td>Bevaras. Rutinbetonad korrespondens gallras 10 år efter utgången av det räkenskapsår som avses. TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundbokföring</td>
<td>8 § FBF. Omfattar dagbok (de ekonomiska händelserna bokförda så att de kan presenteras i registreringsordning) och rapporter ur Hermes.</td>
<td>Bevaras</td>
<td>Dagbok bevaras. Rapporter ur Hermes gallras efter 2 år.</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>----------</td>
<td>--</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Huvudbokföring</td>
<td>8 § FBF. De ekonomiska händelserna bokförda så att de kan presenteras per redovisningsperiod i systematisk ordning.</td>
<td>Bevaras</td>
<td></td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Sidoordnad bokföring</td>
<td>11 § FBF. De ekonomiska händelserna bokförda så att de kan presenteras per redovisningsperiod i reskontor</td>
<td>Bevaras</td>
<td></td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Verifikationer</td>
<td>13 § FBF. T ex faktura, bokföringsorder, omföring.</td>
<td>Nej</td>
<td>Bevaras om de är undantagna gallring enligt FBF 6 §. Övriga verifikationer gallras 10 år efter utgången av det räkenskapsår som handlingarna avser, eller så länge som krävs enligt EU-regler.</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Delårsrapport</td>
<td>8 kap, 10 kap 2 § FAB. Delårsrapport inklusive specifikation.</td>
<td></td>
<td>Gallras 10 år efter utgången av det räkenskapsår som handlingen avser.</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Systemdokumentation och behandlingshistorik redovisningsystem</td>
<td>18 § FBF och förordningen om statliga myndigheters redovisningssystem</td>
<td>Bevaras i de delar som är nödvändiga för att presentera grund-, huvud- och sidoordnad bokföring, samt enligt 8 §. Övrig dokumentation gallras 10 år efter utgången av det räkenskapsår</td>
<td></td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
</tr>
<tr>
<td>Dokumentation av organisation och rutiner avseende hantering av räkenskapsinformation</td>
<td>Omfattar förteckning över behörigheten att förfoga över myndighetens medel, inventeringsprotokoll, register över inventarier och anläggningsstillgångar, mm per räkenskapsår</td>
<td>Bevaras</td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dokumentation av uttag på Statsverkets checkräkning, betalningar, avstämmningar och kontroll</td>
<td>Gallras 10 år efter utgången av det räkenskapsår som handlingen avser.</td>
<td></td>
<td>TRV 2014/1979 8</td>
<td>Räkenskapshandlingar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bilaga 6: Göran Samuelsson och Tove Engvall (2016): Informationsarbete i
Sammanfattning

I en tidigare studie påvisades behovet av en kartläggning av de olika aktörer eller domäner som under olika yrkesbeteckningar är satta att hantera information i sin vardag. Vi har i denna studie haft fokus på hur man i olika domäner ser på information och då främst hur man hanterar värdering av informationen utifrån respektive domäns perspektiv och roll. Syftet med en sådan kartläggning har, förutom att ge en allmän överblick det allt mer omfattande informationsarbetet i en organisation, varit att se eventuella syneriger och samverkansytor kan skapas för att ge förutsättningar för ett mer samlad och enhetligt informationsarbete i en organisations vardag. De domäner som har inkluderats i studien är arkiv, verksamhetsarkitektur, systemförvaltning (PM3), BIM (se def. s.11) och informationssäkerhet. Underlaget till studien har inhämtats via två huvudsakliga källor; litteratur- och intervjustudie. Litteraturstudien har syftat till att ge en bakgrundsteckning till de olika domänerna och intervjuerna syftade till att ge en mer konkret inblick i hur de olika domänerna hantera olika frågor kopplade till information och värdering. Frågor som behandlats i intervjuerna är bland annat;

- om det görs någon kartläggning av information,
- om informationen värderas på något sätt och i så fall vad och för vilket syfte och
- om man ser några eventuella samband med andra domäners verksamhet och samverkan,
- om man kan identifiera det som är unikt och vilka utmaningar man står inför.

förekomma på olika nivåer och ha olika syften och detaljeringsgrad, men det är viktigt att förstå att det är samma information som hanteras och att det finns en kongruens mellan de olika domänerna.

1. Inledning

Arkivverksamheten har under århundraden förvaltat information men har under de senaste decennierna fått se en rad olika domänar växa fram som bidragit till att vi fått en alltmer differentierad och detaljrik informationshantering och förvaltning. Det handlar om informationsarkitekturens olika grenar liksom olika former av systemförvaltning, informationssäkerheten och nu senast verksamheter som samlas under BIM beteckningen (se def. s.11). Ur ett lednings- och verksamhetsperspektiv är de alla exempel på olika sätt att lösa behovet av informationens organisering, kvalitet och effektivitet. Det är troligt att den snabba utvecklingen kring digital information har skapat en fördjupad kunskap om informationens möjligheter men att det på samma gång under de senaste decennierna har skapats överlappande funktioner och arbete.

Sedan decennier är kvalitetsökning och effektivisering av de flesta verksamheter sammankopplad med hur IT-stödet har utvecklats. Under lång tid har de funnits tecken som indikerar att verksamheten låtit sig styras av IT-utvecklingen, dvs att ansvariga gör sig beroende av program- och systemleverantörer och att strategiska satsningar i den egna organisationen blir beroende av infrastrukturella förutsättningar i IT-funktionen.

Historiskt har förändringar ofta kommit in från tekniksidan snarare än från kärnverksamheterna och det finns två orsaker till detta. Den första handlar om volym och kostnader. IT i den stora organisationen är tekniska platformar, infrastrukturella system, metakataloger m.m. En genomtänkt struktur som väver samman dessa resurser i en effektiv lösning är till sin natur långsiktig. Den andra handlar om att alla kärnverksamheter och stödverksamheter bedrivits med särskilda IT-system som bara på ett par decennier övergått från att vara stöd i en nästan manuell och analog informationshantering till att integreras med stora delar verksamheten. Motsättningen mellan ”verksamhet” och ”IT” blir i ett sådant scenario alltmer överspelad. Verksamhetsfrågor och IT-frågor måste lösas integrerat även om det fortfarande finns en del arbete kvar att göra i den delen.15

Vi har tidigare publicerat en förstudie där vi efter en rad intervjuer och fokusgrupper identifierade en rad potentiella forsknings- och utvecklingsområden med bäring på informationshantering och

15 Örebro kommun IT-verksamhet Rapport s.5

En central aspekt i en effektiv informationsförvaltning är dels att ha en förståelse för informationens värde och betydelse på en generell nivå, men också att ha bra modeller för att bedöma olika ”informationstypers” betydelse och relevans för att veta hur man ska göra prioriteringar mm. Detta blir än mer påtagligt i en organisation som är stor och komplex och där flera olika aktörer, både inom och utanför organisationen, är beroende av den information som tas fram och bevaras. För att åstadkomma en större förståelse tror vi att det är viktigt att öka medvetenheten om det arbete som görs av dem som arbetar med att skapa strukturer för den vardagliga informationshanteringen och det har varit också varit utgångspunkt för denna studie.

1.1 Syfte och frågeställning

Med växande mängder av information och en ökad komplexitet finns ett allt större behov av att utveckla modeller för hantering och värdering av dessa informationsmängder. Som en direkt följd av detta växer det fram olika domäner och professioner som blir involverade på olika sätt i denna hantering. Dessa har var och en sin historia och sitt perspektiv.

Tanken är att det också ska kunna leda till en mer effekt hantering av informationen och utgöra en del i arbetet med att ta fram en modell för informationsvärdering för arkivsidan.

Denna studie syftar således till att identifiera om och i så fall hur olika domäner kartlägger och värderar information, utifrån vilka perspektiv och för vilka syften. Samt att identifiera vad som är gemensamt respektive unikt för respektive domän och vilka utmaningar som finns i arbete

http://fudinfo.trafikverket.se/fudinfoexternwebb/Publikationer/Publikationer_002501_002600/Publikation_002579/Fud%20Rapport%20En%20effektiv%20digital%20informationshantering%202015.pdf
framöver. De domäner som vi har valt att studera närmare är arkiv, koncernarkitektur, informationssäkerhet, systemförvaltning och BIM.

1.2 Metod och avgränsningar

Vi har i denna rapport skapat vårt kunskapsunderlag via två huvudsakliga källor; litteratur och intervjuer. Litteraturstudien har haft till syfte att ge oss bakgrundsteckning till de olika domäner som vi valt att studeras. Urvalet av domäner kommer ur den tidigare förstudie som genomfördes under hösten 2014; ”En effektiv digital informationshantering”. Vi menar med begreppet domän i detta sammanhang en del av verksamheten som har erhållit ett visst uppdrag och utgår från en viss konceptuell kontext och syfte. De domäner som inkluderats i denna studie är arkiv, informationssäkerhet, verksamhetsarkitektur, systemförvaltning samt BIM som kommit in som ett nytt sakområde på Trafikverket.

I en inledande litteraturgenomgång har de olika domänernas framväxt/tillkomst, vilken teori och metod/arbetssätt som domänen vilar på samt vilka verktyg och modeller som man nyttjar kort beskrivits.

I intervjudelen har semistrukturerade intervjuer genomförts. Urvalet av personer har baserats på de domäner som har varit urval för studien och personer har rekommenderats av studiens kontaktperson på Trafikverket.

Intervjuerna har genomförts framförallt under de sex första månaderna under 2015 och varat i ca 1-1.5 timme. Personer från följande funktioner har intervjuats; arkiv (både förvaltning och Arkivcenter totalt 4 personer), informationssäkerhet (3 personer), Koncernarkitektur (1 person), Systemförvaltning (PM3) (1 person), BIM (1 person) samt 1 representant vardera från Riksarkivet och MSB som varit involverade i arbetet med den gemensamma vägledningen för informationskartläggning.

Intervjuformuläret (se bilaga 1) har en struktur baserad på i huvudsak arkivdomänens förutsättningar och utmaningar, vilket innebär att frågorna har sitt fokus på det uppdrag arkivsektorn är satt att bevaka enligt Arkivlagen och som vi redogör för nedan. Det medför att samma frågor till andra domäner inte blir besvarade lika utförligt eller inte alls eftersom man inte beaktar samma företeelser. Det i sig ger en bild av komplexiteten, och behovet av att en mer oberoende helhetsbild över informationshanteringen kan skapas.

2. Resultat

I resultadelen nedan redovisas först litteraturstudien och därefter intervjuerna.

2.1 Litteraturgenomgång

Den följande genomgången har en del förutsättningar som skiljer den från en traditionell akademisk sammanställning, där referenser till vetenskapligt granskade artiklar är regel och nödvändiga. Som kommer bli uppenbart så är framväxten av de nya domäner som hanterar och förvaltar information stundtals förvänansvärt osynliga som ämnen på våra lärosäten. Det är snarare typiskt att de inte finns representerade som ämnen på universitetet och högskolor och att de vetenskapligt granskade artiklarna är få och för vissa domäner helt obefintliga.

2.1.1 Verksamhetsarkitektur

Från början kopplad till rena IT-strukturer och utveckling av sådana har ”verksamhetsarkitektur” alltmer blivit ett begrepp för dem som vill överskrida motsättningen mellan ”verksamhet” och ”IT”. Kännetecknande för verksamhetsarkitekturen är att den överbrygger de yrkesmässiga gränserna mellan verksamhet, information och IT. En verksamhet har sin egen livsmiljö där olika delar påverkar och kommunicerar med varandra genom data, information, arbetsätt och organisering. Till sin hjälp har man en rad olika verktyg och resurser. För att kunna avtäcka och förstå denna komplexa konstruktion krävs både kartor och ritningar.

Verksamhetsarkitektur handlar i många och mycket om att lära sig läsa karta/ritning och då i olika skalar så att man även fängar den omgivning som verksamheten verkar i.

Verksamhetsarkitekturens uppdrag

18 IASA 2012: IT-relaterade arkitektroller i Sverige.
19 Edvinsson, H, 2009:7 ff
Verksamhetsarkitekten främsta uppgift är att kartlägga ett nuläge och identifiera ett framtida mer optimalt läge och föreslå aktiviteter och metoder för att förbättra verksamheten.20 I ett längre perspektiv är det uppenbart att EA steg för steg ersätter den typ av organisationsutveckling som kännetecknar traditionell förvaltning, där linjefördelningen är framträdande och där uppdrag, verksamheter och processer är inbyggda i organisationsrutiner. Den digitala informationshanteringen och framväxten av ett digitaliserat arbete möjliggör rakare och enklare samband mellan uppdraget, produktionen och leveransen till kunden och det är arkitekturens uppgift att designa en sådan struktur.

Teori, modeller och redskap för EA är inte ISO-standardiserade21, men bland det 20-tal EA-modeller som utvecklats finns TOGAF (The Open Group Architecture Framework), en industristandard som förvaras av bl.a amerikanska IFEAD (Institute For Enterprise Architecture Developments).22

I TOGAF identifieras fyra domäner för enterprise architecture:

- Verksamhetsarkitektur
- Dataarkitektur
- Applikationsarkitektur
- Teknisk arkitektur

Verksamhetsarkitektures objekt är uppdraget och organiseringen

Information och dokumentation är inte verksamhetsarkitekturens objekt. Det är uppdraget och organiseringen av de resurser som krävs för uppdraget som utgör objektet. Arkitekturens uppgift är att ta ett helhetsgrepp om de olika nivåer som måste samverka för att resultatet ska bli tillfredsställande.

I många miljöer där EA börjat utvecklas ser man dock sällan sådana initiativ och det praktiska arbetet med kartläggning/analys/utveckling av verksamhetens processer är ofta inte ens påbörjat. De processkartläggningarna och processbeskrivningarna enligt RAFS 2008:423 som nu gjorts och görs hos statens myndigheter som ett underlag för arkivredovisningen kan därför endast undantagsvis hämta stöd i existerande produkter och de kan sällan dra nytta av etablerade metoder och arbetsmodeller.

Här skulle man kunna lyfta fram den metodik för verksamhetsanalys som ligger till grund för standarden SIS-ISO 15489, Information and documentation och standarden ISO/TR 26122, Information and documentation – Work process analysis for records. Båda dessa har sin grund i den australiensiska analysmodellen DIRKS, från början utvecklad för behovsanalys i samband med IT-anskapning.24

20 IASA 2012: IT-relaterade arkitektroller i Sverige
22 \url{http://www.opengroup.org/togaf/} Hämtad 2015-02-13
23 Riksarkivets författningssamling, RA-FS 2008:4 Föreskrifter om ändring i Riksarkivets föreskrifter och allmänna råd (RA-FS 1991:1) om arkiv hos statliga myndigheter
24 \url{https://www.records.nsw.gov.au/recordkeeping/advice/dirks/methodology}
Uppgiften för det som brukar kallas IRM (Information Resource Management) är bl a med hjälp av datamodellering bygga gemensamma informationsobjekt där frekvent använd referensdata – t ex personuppgifter - kan organiseras optimalt och med hög kvalitet. Syftet är att minska kostnaderna, redundansen och informationsförlusterna och öka dokumentationens kvalitet och effektivitet.25 Informationsarkitekturen arbetar alltså i hög grad med ekonomi och kvalitet i de system som lagrar organisationens information. Verksamhetsarkitektur handlar om att skapa en helheten och då inte bara om verksamheter utan även hela den omgivning som den är beroende av. Det gäller att få alla delar att samverka i en ständig förändring.26

Dessa informationsobjekt är normalt statiska, dvs de speglar inte verksamhetsprocesserna och förändras inte med dessa utan de lagrar datatyper som förblir stabila under lång tid och som kan brukas och återbrukas av många olika funktioner i flera olika processer. Uppgiften kan även vara att identifiera verksamhetens så kallad masterdata 27 - t ex data om patienter i sjukvårdande verksamhet som ska vara tillgänglig för alla i vården av en viss patient – och sörja för att denna data hanteras säkert och utan redundans. Informationsmodellering är ett viktigt instrument i EA och VA. Syftet med datamodelleringen är att öka dokumentationens kvalitet och effektivitet.

2.1.2 BIM

BIM kan antingen betraktas som ett substantiv och utläses då Building Information Model (ByggnadsInformationsModell) och kan ses som en digital representation av en byggnad/konstruktion. BIM kan också användas som ett verb – Building Information Modeling (ByggnadsInformationsModellering), och utgör då processen att skapa och använda en eller flera bygginformationsmodeller i byggnadens/konstruktionens livscykel.

26 Edvinsson, H, 2009
27 Sammon et al., 2012:
2.1.3 Systemförvaltning - PM3

Pm3 är en akronym och står för På Maintenance Management Model. Det mest grundläggande sättet att hantera innehållet i pm3 är att använda den som en förvaltningsstyrningsmodell för att styra den IT relaterade portföljen i en verksamhet. Tillsammans med en portföljstyrningsmodell för projekt ges alltså en möjlighet att styra hela IT-portföljen ur ett utvecklings- och förvaltningsperspektiv. pm3 beskrivs i en modellbeskrivning med tillhörande metodbeskrivningar som distribueras av På AB i ett licensförfarande. På äger pm3 och ansvarar för dess vidmakthållande och vidareutveckling.

Objektförvaltning – arkitekturell systemförvaltning

Systemförvaltningen hos allt fler myndigheter följer den objektförvaltande modell som kallas pm3. Det som kännetecknar denna modell är att den eftersträvar en anpassning till myndighetens uppdrag och verksamhetsstruktur.

Ett förvaltningsobjekt enligt pm3 består av systemförvaltande resurser som krävs för att ett visst verksamhetsområde ska kunna leverera enligt uppdraget. Här ingår IT-systemen och den information som lagras i IT-systemens databaser, men även andra ”förvaltningsprodukter” som t.ex. handledningar och processkartor. Arbetet med att analysera de uppdragsrelaterade och verksamhetsmässiga faktorer som borde styra avgränsningen av organisationens förvaltningsobjekt kan beskrivas som ett arkitekturararbete - en utlöpare av verksamhetsarkitekturen, eller ett arbetssätt som utvecklas parallellt med denna.

Utmärkande för pm3-modellen är att den traditionella systemförvaltningen delas i en verksamhetsnära ”objektförvaltning” och en systemnära ”IT-systemförvaltning”. Ett förvaltningsobjekt kännetecknas av att det är knutet till en viss verksamhet; det innefattar det/de IT-system som krävs för verksamheten men integrerar även andra stödresurser såsom processkartor, manualer, mallar och annan dokumentation som visar vad som ska utföras och hur det ska utföras och som underlätter en anpassning av IT-stödet. I den utveckling av pm3-modellen som beskrivs av upphovsmannen ser vi hur den från början tekniska systemförvaltningen breddas,

2.1.4 Informationssäkerhet

Arbetet med informationssäkerhet hos offentliga myndigheter utgår mycket från den föreskrift som MSB ger ut om informationssäkerhetsklassning, och även ISO 27000-standardserien, Ledningssystem för informationssäkerhet.

Trafikverket har sedan riktlinjer för informationssäkerhet;

- Riktlinje Informationssäkerhet i Trafikverket TDOK 2011:175 med bilagda checklistor anger Trafikverkets fastställda minimikrav för skyddsnivåer och åtgärder inom informations- och it-säkerhet.
- Riktlinje Informationssäkerhetsklassningsmodell avseende konfidentialitet, tillgänglighet, riktighet och spårbarhet, TDOK 2013:0261, där informationen klassas utifrån dessa aspekter.

En bra dokument- och arkivhantering bör också identifiera de risker som är förknippade med utebliven eller illa organiserad hantering. I ett övergripande perspektiv skulle man kunna se att myndighetens hela dokument- och arkivhantering utgår från en riskklassning. I informationssäkerhetsfunktionen är denna riskanalys satt i fokus för ett standardiserat arbete. De offentliga myndigheternas arbete kring informationssäkerhetsarbete bedrivs idag allt större utsträckning inom ramen för LIS (Ledningssystem för informationssäkerhet) och den internationella standarden för informationssäkerhet.

De bakomliggande styrdokumenten är obligatoriska för statens myndigheter och verksamheten står under uppsikt av Myndigheten för samhällsskydd och beredskap (MSB). I förhållande till kommuner och landsting har MSB en stödjande och rådgivande roll, men socialstyrelsen har utfärdat styrdokument som avser LIS för vårdgivare inom både hälso- och sjukvård och socialtjänst.

Informationssäkerhetsarbets objekt är verksamhetsinformationen

Under senare år har vi sett en växande medvetenhet om arkivfunktionens och informationssäkerhetsfunktionens ömsesidiga beroende. Båda har ett gemensamt syfte och ett gemensamt behov: båda syftar till säkerhet och kvalitet i de verksamhetsprocesser där informationen skapas och förvaltas, båda är därför beroende av kunskap om hur processerna ser ut, vilka aktiviteter som ingår och vilka funktioner de fyller. Först med denna kunskap blir det möjligt att bestämma vad som ska dokumenteras, hur man ska dokumentera och hur dokumentationen ska hanteras. I detta moment är riskanalysen och informationssäkerhetsarbetet avgörande. MSB och Riksarkivet publicerade 2012 en gemensam rapport om processorienterad informationskartläggning.30 I rapporten redovisas en utredningsmodell där verksamheten och den information som hanteras kartläggs i en gemensam process.31 Den bärande idén bakom rapporten formuleras på följande sätt:

2.1.5 Arkiv

Vi har tidigare gjort en relativt utförlig litteraturgenomgång om värdering (sk appraisai) kopplad till arkivdomänen32. För offentliga myndigheter är Arkivlagen grunden vid värderingsarbetet. Där anges syften för bildande och bevarande av arkiv som ska tillgodoses. Argumenten måste sedan utvecklas och analyseras utifrån verksamhetsspecifika förutsättningar. I Arkivlagen33 anges att arkiv ska tillgodose

- Allmänhetens rätt att ta del av allmänna handlingar.
- Behov av information för rättskipning och förvaltning.
- Forskningens behov.

Den tredje punkten, forskning, bör tolkas ur ett brett perspektiv där alla arkivanvändare anses bedriva forskning.

32 Se ”bilaga 1 relaterad forskning om appraisal”, tillhörande förstudien Effektiv informationsförvaltning.
33 Arkivlag (1990:782)
2.1.6 Sammanfattande diskussion litteraturdel

De domäner som vi refererat till ovan hanterar information som uppstår och erhåller värde i organisationens verksamhet, dvs. som dokumenterar verksamheter, transaktioner och händelser och som därför är kopplad till olika delar av processtrukturen. Vi kan då tala om en verksamhetsbunden information eller verksamhetsinformation. Arkiv domännens definition av informationsförvaltningens objekt brukar innefatta handlingar i form av dokument och data som infångats eller upprättats inom ramen för en organisations verksamhet, oavsett format och medium och oavsett i vilken fysisk eller administrativ miljö hanteringen sker. Här ingår inte bara de handlingar som döljer sig bakom Tryckfrihetsförordningens och Arkivlagens handlingar utan även myndigheternas (arbets)handlingar dvs handlingar som inte blivit allmänna handlingar. Här ingår även den enskilda sektorns handlingar och det som i anglosaxiska och amerikanska sammanhang brukar kallas ”records”.34

Framväxten av en rad domäner som ägnar sig åt att förvalta verksamhetsbunden information signalerar att informationen behandlas som en värdefull tillgång, dvs. ett kapital att förvalta eller åtminstone en resurs värd att hantera på ett överlagt och organiserat sätt. Informationsförvaltning i den här betydelse har utkristalliserats allt tydligare i anslutning till den framväxande e-förvaltningen och det parallellt utvecklade e-arkivet. Här ryms alla funktioner som bestämmer hur informationen uppstår, säkerhetsklassas, dokumenteras, registreras, hanteras, lagras, sprids, arkiveras och återanvänds.35

Kännetecknande för e-förvaltningen är att flera av dessa funktioner utövas parallellt, i ett continuum, och att de är ömsesidigt beroende. Funktioner som förut arbetade i stuprör och under lång tid ersätts samverkande funktioner som hanterar frågorna i ett sammanhang. Informationsförvaltningen behöver en genomgående struktur som kan hanteras i olika delfunktioner som dokumenthantering, registratur och e-arkiv.

34 Record(s) (ISO30300, 3.1.7) - Information created, received and maintained as evidence and as an asset by an organization or person, in pursuit of legal obligations or in the transaction of business.

35 Begreppet ”Records continuum” sammanfattar ett synsätt enligt vilket dokument och metadata flödar kontinuerligt i ”förändliga rum” och systemmiljöer och där ny dokumentation ständigt föds ur redan existerande. Mot detta kan ställas en traditionellt livscykel-synsätt där analoga handlingar passerar sekventiella funktioner i fysiska rum. De viktigaste företrädena för det förra är arkivarierna Frank Upward (Australien) och David Bearman (USA). Se tex. F. Upward, (2005). The records Continuum. i McKemmish, Piggott, Reed & Upward (Eds), Archives: Recordkeeping in Society, s. 197-222, Wagga wagga NSW
2.2 Intervjuer

Intervjuerna som gjorts har syftat till att ge en inblick i de olika domänernas eventuella påverkan på hur information värderas på Trafikverket. Frågor som vi fokuserat på är huruvida det görs någon form av kartläggning av information, om den värderas på något sätt, vad värderingen i så fall syftar till, om man på något sätt beaktar informationens nytta och vilka som är ansvariga och medverkar i ett eventuellt värderingsarbete.

De som intervjuats arbetar inom domänerna verksamhetsarkitektur, BIM, systemförvaltning (PM3), informationssäkerhet och arkiv. Dessa ligger inom olika organisatoriska delar av Trafikverket. Arkiv (Central funktion Kommunikation och Informationshantering), Arkitektur, informationssäkerhet och systemförvaltning (Central funktion IT) samt BIM (Verksamhetsområde Underhåll). BIM har tillkommit som ett nytt sakområde och är under införande i Trafikverket.

Nedan presenteras vad som framkommit i intervjuerna. Dessutom har externa representanter från arbetet med den gemensamma vägledningen för processorienterad informationskartläggning intervjuats för att belysa ett möjligt samverkansområde. Vi har i bilaga 2 även sammanställt våra iakttagelser i tabellform.

2.2.1 Kartläggning av information

Inledningsvis ställdes frågan om man på något sätt kartlägger och/eller identifierar organisationens information.

Verksamhetsarkitektur

Inom arbetet med koncernarkitektur utreds informationsägarsskapet. I anslutning till detta identifieras och kartläggs också vilka informationsområden Trafikverket består av. Informationsägarsskap delas i Trafikverket upp i två delar; dels ett ansvar för att förvalta informationsstrukturen och dels ett ansvar för att leverera informationen. Informationsområden beskriver vilka informationsobjekt som hänger ihop, hur och med vilka attribut. En mer formell definition är "en logiskt sammanhängande del som innehåller ett eller flera informationsobjekt med tillhörande relationer".37

36 Koncernarkitektur är en enhet i IT-styra. Här finns två arkitekter per nivå/specialisering - information, applikation, infrastruktur.
37 Neldemo Ann-Kristin presentation Trafikverket 2015-03-19
Figur 2: Exempel på Informationsområden Trafikverket 2015

Informationsobjekt är ett verksamhetsbegrepp som man samlar data om. Kund är ett informationsobjekt och några exempel på egenskaper för kund är kundnamn, adress, postnummer, postadress. En förekomst är information/data om en enskild kund, t.ex data om Green Cargo. Syftet med den nuvarande kartläggningen är att skapa en struktur för att utse:

Förvaltare för processerna
Förvaltare för informationsområde
Förvaltare för system IT-objekten

Arbetet med informationsägarskapet sker också i samverkan med informationssäkerhet då man ser ett behov av att mappa ihop dessa informationsområden och objekt med informationssäkerhetsklassningen. Inom arkitekturen har man hittills haft fokus på informationen i databasform.

BIM

BIM (Building Information Model) eller på svenska Byggnadsinformations-modellering är i Trafikverket ett eget sakområde (i processen Underhåll) från januari 2015. Tidigare låg BIM i huvudsak på Investering stora projekt. Den ökade aktiviteten inom Trafikverket kring BIM kommer från regeringen och ett direktiv om att Trafikverket skall leda arbetet inom den svenska anläggningsbranschen.

Det innebär att arbetet under egen ”BIM-flagga” knappt påbörjats men det har redan gjorts mycket arbete som kan användas som utgångspunkt. I en stor kartläggning inom projekt ANDA framkom att Trafikverket hade cirka 100 system för anläggningar, och som vilka i de flesta fall fungerade som stuprör med otydlig informationsstyrning och ansvar. Målet är att underhålet för väg och järnväg ska samordnas. Utifrån det underlag som togs fram inom ANDA, ska BIM nu gå vidare och

PM3

PM3 är en modell för att skapa en likartad styrning och samordna och integrera IT-systemen med ledningssystemet. Där man samordnar verksamhetsbehov med IT-stöd. Modellen har roller och ansvar på 3 nivåer:

1. Strategisk/styrning - Förvaltningsansvarig (IT och Verksamhet på hög nivå)
2. Ledningsnivå leda objektet – Förvaltningsledare och Teknisk förvaltningsledare planering
3. Förvaltare i vardagen

Informationssäkerhet

Trafikverket har regelverk för informationssäkerhetsanalyser för att bedöma informationssäkerhetskra av och behov av skyddsåtgärder. Det ingår som obligatorisk aktivitet i projekt- och förvaltningsarbete relaterat till IT och informationshantering. I informationssäkerhetsanalysen görs omvärlds- och informationsanalys (där man identifierar information som hanteras och vilka faktorer som påverkar kraven på informationen); kravanalyser

(analys av konsekvenser vid brister i konfidentialitet, tillgänglighet, riktighet och spårbarhet och utifrån det definieras informationssäkerhetskrafter på informationen) och risk- och sårbarhetsanalys (bland annat tittar man på vilka hot och brister som finns mot olika lösningar och vilka risker det innebär, man analyserar vilka aktiviteter som behöver genomföras för att skydda informationen mot identifierade hot och brister och man tar fram en plan för att genomföra aktiviteterna (Trafikverkets metod för informationssäkerhetsanalys; TDOK 2011:198). I informationssäkerhetsanalysen ingår därmed att kartlägga information.

Arkiv
I samband med framtagande/revidering av informationshanteringsplaner identifieras vilken information som finns i berörda verksamhetsprocesser, liksom hur den används och styrs. Kartläggnings- av information kan också göras i samband med gallringsutredningar och vid anslutning till e-arkiv. Vid anslutning till e-arkiv tittar man på vilken information som ska tas in i e-arkivet, att den har rätt metadata, hur den ska se ut och struktureras etc.

Arkivcenter, som hanterar det analoga arkivet, gör i samband med att de mottar leveranser en form av kartläggnings- av metadata som behövs för att sökoptimera informationen.

2.2.2 Värdering av information

En sak är om information kartläggs/identifieras. En annan är om den värderas på något sätt. Värdering kan handla om olika saker, tex att göra en bedömning av vad som är relevant att spara, om det omfattas av sekretess, hur kritisk informationen är för organisationen mm.

Verksamhetsarkitektur
Inom koncernarkitekturen menar man att informationen ska värderas när den används. Om det tex kommer nya krav på information görs tex en bedömning av kostnad och värdet av att ha informationen. Värderingen omfattar även en bedömning av huruvida informationen har rätt kvalitet. Vid tex leveranser från leverantörer måste de se till att informationen håller rätt kvalitet. Det finns ingen modell för värdering, men en bedömning görs när de tar in ny information. Nytta och krav på kvalitet varierar utifrån vem som använder den och för vilket syfte. En annan typ av bedömning kan vara när det uppstår önskemål om nya attribut på informationen och då görs en bedömning av vilken arbetsinsats det skulle innebära och om det är värt det.

Användning av masterdata innebär också en form av värdering. Masterdata har två betydelser:

- att all data skall ha en källa (för tex Anläggning, Kund eller Leverantör). Då blir det ett urval vad som bedöms vara masterdata.

- att objekt som används av andra utanför Trafikverket, eller till en annan process är viktigare än andra.

Detta vägleder hur mycket metadata och informationssäkerhetsaspekter man jobbar med per objekt. Det pågår nu en uppdatering av informationsområden och görs i samverkan med PM3.

Inom koncernarkitekturarbetet anges också vilka attribut som ska anges för informationen, vilket är en värdering av den kontextuella informationen.

PM3

Informationssäkerhet

1. **Konfidentialitet**: Skydds mål att innehållet i ett informationsobjekt (eller ibland även dess existens) inte får göras tillgängligt eller avslöjas för obehöriga.
2. **Riktighet**: Egenskapen att skydda exaktheten och fullständigheten gällande tillgångar.
3. **Tillgänglighet**: Informationstillgångar ska kunna utnyttjas i förväntad utsträckning inom önskad tid.
4. **Spårbarhet**: Möjlighet att entydigt kunna härleda utförda aktiviteter i systemet till en identifierad användare (Informationsklassningsmodell, TDOK 2013:0261, s. 1).

Informationsklassningsmodellen används vid genomförande och revidering av informationssäkerhetsanalyser, samt som underlag vid utformning av arbetssätt och tekniska lösningar (Informationsklassningsmodell, TDOK 2013:0261, s. 1).

146
Nyttoaspekten anses vara självlivlig att analysera, dvs olika informationsflödens nytta för verksamheten. De vet dock inte om det görs ekonomiska bedömningar, men i informationssäkerhetsanalysen görs en bedömning av vad olika risker kan medföra för kostnader.

Arkiv

Arkivfunktionen ska också vara delaktiga vid anskaffning av nya IT-system. De kan då titta på vilken information som ska hanteras, om gallringsbeslut behövs, om det ska levereras till e-arkiv, format mm. Utifrån ett bevarandeperspektiv är databaser en utmaning. Både vad gäller värdering och möjlighet till uttag av information för bevarande.

Huruvida informationen värderas utifrån dess nytta menar man att ett problem är att i verksamheten betraktas information som en egen resurs för den egna verksamheten och man ser dess nytta för egen del, inte som en del i ett större sammanhang. Det finns inget systematiskt tänk kring informationens nytta, men indirekt vet man att viss information har större nytta än annan. Det är också svårt att veta vilken information som är relevant för externa parter och då är det svårt att veta hur man ska arbeta med tillgängliggörande.

39 Riksarkivets författningssamling, RA-FS 2009:1, 6 kap
2.2.3 Ansvar och medverkan

I den här delen har vi ställt frågor kring vem eller vilka som ansvarar för värderingen/kartläggningen och är involverade i arbetet?

Arkitektur

Det finns riktlinjer som formulerar vad man skall göra.

Sedan följer en dialog kring vilka som gör vad, och ibland kan olika domäners anse sig ha ansvar för samma saker. Det verkar råda en viss oenighet om hur ansvar ska fördelas och vem som ska leda vissa arbetsuppgifter. Ett sådant område är informationshantering. En del i det kan vara olika uppfattning om vad olika begrepp innebär.

BIM

Informationssäkerhet

Verksamheten ansvarar och genomför arbetet med informationssäkerhetsanalys, med stöd av IT-styra. Det är verksamheten som äger systemen och kan verksamheten och de äger analysen.

Sakområdet informationssäkerhet har funktionellt ansvar för att styra, stödja och följa upp arbetet med informationssäkerhet. Implementationen ligger i linjeorganisationen.

Arkiv

2.2.4 Värderingens roll/syfte

Vad vi i denna studie betraktar som olika former av värdering av information har också olika syften.

Arkitektur

BIM

Syftet med BIM är att bygga upp ett gemensamt system och skapa en enhetlig hantering. I förberedelserna med införandet av BIM är en del i arbetet att skapa en struktur och klassificering i systemet. BIM möjliggör en många smarta förändringar som ger bättre kvalitet, billigare produktion, förbättrat informationsflöde, bättre möjligheter att hålla tidplaner och gör det möjligt att jämföra flera alternativ på ett helt annat sätt jämfört med tidigare. Det innebär också att i förlängningen får vi en tydligare koppling mellan verksamhetsprocesser, den fysiska infrastrukturen och informationshanteringen.

Informationssäkerhet

Syftet med informationssäkerhetsklassningen är att veta hur man ska hantera informationen. Det är ett underlag för att veta hur man ska dimensionera, tex vad som ska skyddas, till vilken nivå,
förhållningsregler, rutiner mm. Man tittar på regelverket och ser till att det följs. Att det är rätt nivå på säkerheten tex är viktigt. Säkerheten avvägs också mot andra behov och informationssäkerhetsanalysen bidrar till att hitta rätt nivå.

Arkiv

Frågan om hur man kan värdera vad som är relevant på lång sikt är svår och det finns inget bra stöttande regelverk för det. För några år sedan gjordes en modell för att försöka fånga det. Utgångspunkten för värderingen är legala krav, vad som är ekonomiskt viktigt och vad som är förtroendemässigt viktigt. Man ska bl.a kunna bevisa åtaganden och skyldigheter.

Grunden är att de utgår från Arkivlagen; rättsskippning och förvaltningens behov, medborgares rätt att ta del av allmänna handlingar och forskning och därefter behöver behoven analyseras vidare. Problemet är att aspekterna för kulturavsp och allmänhetens rätt till insyn inte är tillräckligt drivande för verksamheten. Kvalitet, ekonomi och egen nytta anses vara viktigare perspektiv.

43 Arkivlag 3§
2.2.5 Gemensamma beröringspunkter och samverkansmöjligheter

Frågan ställdes huruvida man såg att det arbete som bedrivs att kartlägga och eventuellt på något sätt värdera information har gemensamma syften eller beröringspunkter med arbete som bedrivs inom andra domäner.

Arkitektur
Det är ett samarbete mellan Koncernarkitektur och informationssäkerhet, liksom systemförvaltning. Tanken är att skapa en mer enhetlig hantering av information. Det har förts en diskussion med KI om hur man ser på informationshantering och de har bla utarbetat en bild för att beskriva de olika funktionernas roller för att illustrera sitt synsätt. Det verkar dock finnas olika uppfattning om hur bilden bör se ut och det skulle kunna vara fruktbart att se om man kan skapa någon samsyn kring hur de olika områdena relaterar till varandra och hur ansvarsområdena ser ut.

Uppfattningen som IT styra (där både Koncernarkitektur och informationssäkerhet ingår) har, är att informationshantering är ett begrepp som bör ligga i mitten, som verksamhetsområdena ansvårar för att tillämpa. Utöver det finns det tre sakområden som stöttar i det arbetet; informationssäkerhet (med ansvar att styra, stödja och följa upp Trafikverkets informationssäkerhetsarbete), dokument- och ärendehantering (ansvar för att skapa förutsättningar för en effektiv användning, bevarande av information mm) samt IT (ansvar för informationsarkitektur och en effektiv hantering, tex hur man ska bygga system, lagra informationen mm). De menar att de tre sakområdena stöttar verksamheten i att utföra informationshanteringen.

BIM

PM3
För arbetet inom PM3 är det viktigt att samverka med delar som ligger före Underhåll (Samla in och Planera samt Investera processen) – ju bättre beställning de får från dessa desto bättre jobb kan de som jobbar i förvaltning (PM3) göra.

Det finns ännu ingen förvaltning i BIM. Viss samverkan har skett med Informationssäkerhet – där man har gjort analyser på IT-stöd/system, men inte på processer. Det skulle behövas mer samverkan med Arkitektur inte minst i system som Chaos, Share Point.

Informationssäkerhet
Informationsmodelleringen som bedrivs inom Koncernarkitektur ska samordnas med kartläggningen som görs vid informationssäkerhetsklassningen. Däremot har man inte beaktat kartläggningsarbetet som görs inom arkivdomänen. I informationskartläggningen har det ibland uppstått frågor där arkivfunktionen kontaktats, annars har de inte tänkt på någon direkt samverkan. Den vägledning som tagits fram av Riksarkivet och MSB verkar man inte ha inkluderat i sitt arbete.
Arkiv

Det finns vissa kopplingar till informationssäkerhet och arkitektur, men man anser att dessa utgår
från ett mer tekniskt perspektiv. De menar att mellansteget mellan styrning och teknikval är
ganska svag inom Trafikverket. Man kan se det som en pyramid med ledningens mål i toppen,
verksamheten under det och sedan IT-plattformen därunder. De är rätt starka men mellanstegen
är svagare. De menar att IT/applikationstänkten ofta dominerar. Tanken är att verksamhetsutvecklarna ska fungera som länk mellan ledning, verksamhet och IT. Det behövs
dock en större förståelse för processflöden och att man inte fastnar i praktiska
dokumenthanteringsfrågor.

Mellan arkiv, informationssäkerhet och IT behöver man tydligare definiera vem som gör vad och
hitta samarbetsformer. Rollerna enligt PM3 är bra och det går åt rätt håll, men är inte tillräckligt.
Det behövs högre kompetens inom vissa områden och det finns ett stort utbildningsbehov i
verksamheten.

En annan person menar att det finns sådant som är gemensamt som berör IT (inklusive arkitektur)
och informationssäkerhet. Hen menar att arkivfrågorna borde ha större inflytande vid tex
anskaffning av system. De har inte samarbetat med någon som gör tex informationsmodellering
eller arbetar med systemförvaltning.

Man menar att det förekommer ett visst dubbelarbete, där man tar reda på i princip samma saker
om samma information. Liknande saker kan tex efterfrågas av dem som gör
informationssäkerhetsanalysen som de som gör informationshanteringsanalysen utifrån ett
arkivperspektiv. Eventuellt kan det även finnas andra som gör liknande saker. En annan synpunkt
som framkom var att det är en stor och komplex verksamhet och många olika verksamheter som
krokar i och överlappar varandra, varför det blir svårt att få styrning på det.

2.2.6 Intervjuer angående den gemensamma vägledningen för processorienterad
informationskartläggning

Som exempel på fördjupad samverkan mellan olika domäner har Riksarkivets och MSB:s
gemensamt framtagna vägledning för informationskartläggning\(^{44}\) tagits upp i denna studie och
personer från det arbetet har intervjuats. MSB och Riksarkivet har tagit fram en gemensam
vägledning för processorienterad informationskartläggning. Anledningen var att man såg
gemensamma behov av att kartlägga information och synergieffekter med att göra ett gemensamt
arbete i stället för dubbelt. I Riksarkivets föreskrifter, tex RA-FS 2009:1\(^{45}\) finns också
informationssäkerhet med. Inom offentlig förvaltning strävar man också efter att i den mån det går
samverka för att öka kvalitet och effektivitet i förvaltningen. Det är ett sätt att samla resurser, men
också att nå andra grupper utanför den egna domänen, ha ett kompetensutbyte och hitta ett
gemensamt språk kring samma information. Man har också sett att med vägledningen har man
nått ut till fler.

\(^{44}\) MSB & Riksarkivet, 2012

\(^{45}\) Riksarkivet, RA-FS 2009:1, kap 6
Förutom själv kartläggningen av information som görs både i informationssäkerhets-klassning och för arkivredovisning, så finns ett gemensamt intresse i att skydda information. Trafikverkets syn på informationskartläggning- och värdering har belysts i redovisningen ovan, nedan ges nu två externa perspektiv på frågan, men som fortfarande befinner sig i domänerna arkiv och informationssäkerhet.

Syfte med informationskartläggning

Syftet med informationskartläggning är utifrån arkivperspektivet att man behöver veta vilken information som finns för att ta ställning till hur den ska hanteras, om den ska bevaras etc. Syfte är också att ha ett redskap för informationsstyrning. Redan när informationen skapas ska man veta hur den ska hanteras och vilken plats den har i ett större sammanhang, ett processområde där informationen skapas. Informationsstyrning omfattar bl.a. att ha kontroll, beredskap och medvetenhet om vilken information som skapas och i vilket sammanhang så att inte information upprättas på mafå och personbunden.

Vägledningen illustrerar sambandet mellan verksamhet och information. Medvetenheten om det, är något som behöver lyftas i många organisationer och är något som man borde lägga mer resurser på.

Det ger också en bild av vad som är mer betydelsefullt än annat. Där kan det också finnas olika uppfattning inom organisationen. Informationskartläggningen och informationssäkerhetsklassningen bidrar också till kontinuitetshantering, att kunna upprätthålla verksamheten vid större störningar.

Beröringspunkter mellan arkiv och informationssäkerhet

En gemensam nämnare för arkiv och informationssäkerhet är skydd av information. Det framgår både i Arkivlagen och Riksarkivets föreskrifter. För elektronisk information finns det med i tex RA- FS 2009:146 och för analog information har Riksarkivet länge föreskrivit om detta. MSB arbetar mycket med riskhantering och kontinuitetshantering och de kan ta stöd av varandras föreskrifter. Båda ämnar också analysera informationshantering, där man ser sambandet mellan

46 Se tex 3 kap, §3, samt 6 kap om informationssäkerhet.
informationshantering och verksamhetsprocesser. Den gemensamma vägledningen har varit ett sätt att överbrygga professionsgränser och överlappa kompetenser som gjort att de kommit närmare varandra. Kunskapen om varandras arbete har ökat.

Angående andra domäner så går säkert vägledningen att utveckla och använda även inom andra områden, tex verksamhetsutveckling. Det är dock inget de gått in på i arbetet med vägledningen då de ville ha verktyst för att beskriva ett nuläge och inte börläge. Det kan finnas andra konkreta områden att samverka kring för arkiv, tex informationshanteringen för ekonomihantering.

Sammanfattande slutdiskussion

Syftet med denna studie var att undersöka om och hur olika domäner kartlägger och värderar information. Vi avsåg med detta att skapa kunskap om den samlade bilden av informationens värde i organisationen och ge underlag för en mer gemensam förståelse för informationen. Att studera vad de olika domänerna har gemensamt, vad som är unikt för respektive område och eventuella utmaningar.

3.1 Gemensamt

Inom arkitektur, BIM, PM3, informationssäkerhet och arkiv görs olika former av kartläggning och klassificering av information. De syftar till olika saker och har olika angreppssätt, men alla påverkar i någon mån värdering av information. Inom arkitektur görs en kartläggning och klassificering av informationsområden och deras avgränsning och definition, liksom utformandet av arkitekturen för att passa det, är en form av värdering. I arbetet med BIM görs en struktur och klassificering och det görs en avgränsning av vilken information som ska tas in och hur den ska beskrivas. Det kommer också att göras en bedömning av vilka system och processer som ska prioriteras, vilket också är en form av värdering. I arbetet med PM3 är det främst systemen som kartläggs och det finns planer på att koppla information mer tydligt med systemen som förvaltas, men man har inte riktigt hittat en användbar nivå för det. I informationssäkerhetsklassningen görs en kartläggning av information och en klassning utifrån ett riskperspektiv. Inom arkivdomänen görs också en kartläggning och värdering av information, avseende hantering och bevarande av information över tid.

I arbetet med att kartlägga och på något sätt värdera informationens värde, finns vissa gemensamma syften för arkiv- och informationssäkerhetsdomänen. Detta har också uttryckts i Riksarkivets (RA) och Myndigheten för samhällsskydd och beredskap (MSB) gemensamma förslag

Detsamma gäller även arkitektursidan, där en ökad kontroll på informationen och effektivare arkitektur skapa mer ordning och reda i hanteringen och därmed en högre kvalitet. För värderingen som görs både inom arkiv och informationssäkerhet, ser man ett behov av att det finns en dynamik över tid. Informationens värde och användning förändras över tid. Alla menar att värderingen bör vara proaktiv, dvs i ett tidigt skede. För att kunna planera och styra hanteringen och kravställa IT-systemen att fungera utifrån verksamheten och informationen. Även inom BIM har det gjorts kartläggningar och i arbetet med att förna över information till det nya systemet kommer behovet av värdering och komplettering av metadata att öka.

3.2 Unikt

Arkitektur- och informationssäkerhetsdomänerna liksom Pm3 är i stor utsträckning

framåtsyftande och sätter strukturer för kommande hantering. Arkivredovisningen syftar till att ge en översikt över nuläge och att hitta tillbaka till och tolka befintligt material, men också att ge anvisningar om hur information ska hanteras här och nu för att den skall gå att återanvända i framtiden. I samband med ett sådant arbete framkommer också ofta behov av förändringar som behövs för att förbättra hanteringen vilket gör att man även skapar normer för framtida hantering.

I och med utvecklingen av beställarrollen finns också ett ökat behov av att ställa krav proaktivt. BIM är ett initiativ för att sätta strukturer för hanteringen och relatera den till verksamheten och därigenom öka interoperabilitet. Därigenom försöker man få ihop arkitektur med informationshanteringen på en verksamhetsnära nivå.

Om arkitektur och Pm3 kan ses som verktyg/infrastruktur, så handlar arkiv och informationssäkerhetsshantering mer om hanteringen av informationen som flödar i denna struktur.

PM3 verkar ha en tydligare koppling till ekonomimodellen, ekonomifunktionens sätt att påverka hur Trafikverket hantera sin information är något som inte har inkluderats i denna studie, men som vi avser att beakta i kommande arbete.

3.3 Utmaningar

Något som skulle kunna vara relevant att titta närmare på är om ISO 30300, Ledningssystem för verksamhetsinformation, skulle kunna vara användbart för att skapa en samsyn kring informationshanteringen på en organisatorisk ledningsnivå. Den har bland annat ett tydligt fokus på att upprätthålla informationens kvalitet.
3.4 En modern informationsvädering

Vi har i denna studie försökt att dokumentera fem olika domäner som med lite olika bakgrund och perspektiv arbetar med informationshantering eller förvaltning. Flera av dessa har en tydlig koppling till IT och där arkitekter, systemförvaltning och informationssäkerhet är direkt komna ur IT-avdelningen ingen av dessa har egentligen någon påtaglig historia över 40 år.

IT som begrepp har under decennier i princip varit liktydigt med teknik. Den första bokstav I, för information har varit helt underordnad. Men genom den tekniska utvecklingen som möjliggjort en otrörlig kapacitet för att dokumentera i princip allt med hjälp av text, bild, sensor etc. och dessutom att kunna kommunicera denna information har vi nu nått en helt annan läge och nivå. Och det är nog dags att mer tydligt separera de två bokstäverna åt – eller rättare sagt frigöra I i sin egen rätt att verka. Det innebär att vi får en grundläggande T (teknik) som handlar om att skapa förutsättningar för att fånga och kommunicera information. Sedan får vi mer verksamhetsanpassad teknik som mer påtagligt integreras i den vardagliga informationshantering och förvaltningen.

Fig 3: Informationsarbete i verksamhetens tjänst

I figur 3 har vi skissartat försökt att placera ut de studerade domänerna i en klassisk fyrfältare där vi på x-axel har graden av samverkan/integration med kärnverksamheten (K) eller om man agerar mer som en uttalad stödprocess (S). På den andra axel har vi försökt mappa in domänerna för att se i vilken utsträckning man är orienterad gentemot mer tekniska/system frågor eller har sitt fokus mot informationen. PM3 har vi placerat i nedre högra hörnet som den mest system/teknikorienterade domänen men med en stark koppling till kärnverksamheten. BIM förknippas starkt med teknik men i det arbete som nu skall genomföras upplever vi nog ändå att det framförallt är informationens interoperabilitet som står i centrum varför vi placerat den betydligt närmare I (informationen). Arkivdomänen har vi placerat närmare S som i stödprocess eftersom vi anser att deras verktøy och modeller kan verka utan någon omfattande daglig dialog med kärnprocesserna. Med ett centralt placerad e-arkiv på plats blir troligen kontakterna mer intensiva. Både arkitektur och informationssäkerhetsdomänerna har vi placerat mer tydligt i mitten. Måhända är infosäkerhet något närmare verksamheten då deras regelverk mer påtagligt påverkar kärnprocessen i sin vardagsverksamhet.

3.4.1 Mot en gemensam informationsmodell?
Behov av samverkan kring styrning av information ökar, då det blir allt mer komplext. Kartläggning och värdering av information är ett av de områden som ingår i det, liksom skapandet av informationsmodeller. Oberoende på vilken nivå man pratar om information och data;

- tekniskt utbyte av information
- processer och informationsobjekt på verksamhetsnivå
- eller på en mer övergripande affärs/mål nivå

Det är möjligt att vi sakta har nått en mognad inom svensk IT verksamhet som gör det möjligt att idag skapa en gemensam modell på alla nivåer. Vi får inte glömma bort att en någorlunda gemensam informationsmodell har varit förutsättningen för hela den enorma utvecklingen vi sett inom ITK sektorn och där har nästan alla samhällsfunktioner varit delaktiga. En rad olika sektorer har utvecklat förhållandevis stabila och utåtliga meddelande/utbytesformat som bygger på en gemensam informationsmodell, se till exempel inom ekonomi och telekom;

EDIFACT,
ISO 20022 UNIFI en internationell standard för utveckling av finansiella meddelanden enligt en standardiserad XML syntax.
ARTS (retail)
OAGIS (cloud, mobile computing, and the Internet of Things)
TMForum – SID (telecom)
GS1-eCom (retail)

Arkivsektorn har t.ex utvecklat EAD för arkivredovisning och vi har också successivt tagit fram xml-scheman som skall hantera paketering av våra e-arkiv såsom METS och PREMIS och nu senast de paketerings- och meddelande scheman som tagits fram i det svenska arbetet med FGS (Förrättningsgemensamma specifikationer) i Riksarkivets regi. Vi behöver dock utveckla en rad sådana meddelande/utbytesschema från olika verksamhetsflöden till dessa e-arkiv verktyg.
Inom BIM finns också en rad initiativ i denna riktning där man försöker skapa ett gemensamt sätt att hantera informationen.

Konkret skulle detta innebära att Informationsområde – Trafikhändelse som arbetar med;

- Annonsering
- Dagligt tåg uppdrag
- Trafik påverkande händelse
- Trafikledn. Åtgärd

avsätter dokumentation i form av transaktioner, verifikat och dokument och frågan är om detta skulle kunna utgöra grunden även för arkivredovisningen. Ett informationsobjekt kommer vara betydligt stabilare över tid att arkivera än att relatera till en mängd olika processer och som ständigt ändras. Förvisso bör kopplingen till processen finnas med som en redovisningspunkt i dokument/infoplanen men mer likt ett ställe som t.ex förvaring finns i dagens. Eftersom informationssäkerhet redan är integrerad i arbetet med informationsområdena är förslaget att återanvända upplägget i MSB/RA samarbetet. Vi ser också att ekonomisystem/modeller har stor inverkan på hur information hanteras och grupperas varför det vore önskvärt med en granskning även av den funktionen.

Figuren nedan (Fig 4) visar hur allting hänger ihop så att verksamhetens uppdrag/mål omsätts i processer/aktiviteter som genererar information vilken hanteras i olika system. Processer visar hur något görs och som hänger ihop med begrepps- och informationsmodeller som förklarar vad som görs. Informationsmodell/områden som kopplas till uppdraget (inte processerna). Slutligen hanteras information via resurser som system och databaser.
Figur 4: Verksamhetens delar

Det är också viktigt att se informationen som en integrerade resurs i verksamhetens helhet. Vi tror att en närmare studie av ISO 30 300 serien som på svenska kallas ledningssystem för verksamhetsinformation tydligare kan synliggöra arkivdomänens syfte och bidrag:

Figur 5. Samverkande domäner och standarder.

Detta leder också in emot fråga om organisering av arbetet kring informationen. Idag är det fortfarande så att de flesta av informationsflöden befinner sig i något som liknar ”stuprörförsörjning”. Detta påverkar i sin tur var och hur informationen hanteras och värderas i organisationen. Det är upp enbart att informationsdelning och överföring mellan olika system och informationsflöden behöver effektiviseras för att uppnå digitaliseringens fulla potential. Större effektivitet kan också uppnås genom att studera hur Trafikverket strukturerar och hanterar funktioner kring ledning och styrningsfrågor som är kopplade till informationshantering och förvaltning. För att en sådan ledning och styrning skall fungera bör någon form av samlad kunskap genereras. Vi föreslår att det här arbetet bedrivs samordnat och integrerat för att skapa de bästa förutsättningarna för att sammanställa befintlig kunskap kring informationsarbetet, där centrala funktioner för informationshanteringen dokumenteras och beskrivs t.ex:

Begrepp (definitioner).
Benämningar (namn, synonymer, homonymer)
Information:
Verksamhetsregler:
Krav på information:
Informationsägare:
Informationskällor : (Lagring och hantering av informationen)
Arkivering: överföring (FGS), e-arkivering, utlån och utlämnande av dokument/information
Användning av informationen/Tillhandahållande:
Varje punkt bör generera någon form av sammanställning eller dokumentation som kan rubriceras i form av processbeskrivningar, klassificeringsstruktur, arkitektur, säkerhetsklassning, systemdokumentation, arkivredovisning etc. Dessa metadokument (eller sammanställningar av dessa) utgör då stommen i en sammanhållen informationsmodell. För att uppnå en effektiv livscykelhantering av information behöver vi i ett nästa steg slå fast vilka delar en sådan modell bör innehålla, samt hur vi operationellt kan följa upp och mäta hur vi utvecklas i de olika parametrarna. Inte minst bör vi fördjupa kunskapen kring ekonomimodellens inflytande på informationshantering och förvaltning varför ett utökat arbete kring detta bör igångsättas och tydligt integreras i enhet som sätts att hantera och förvalta en mer sammanhållen informationsmodell.
Referenser

Arkivlag (1990:782)

http://byggtjanst.se/tjanster/bsab/

E-delegationen 2014: Ramverk för Digital Samverkan version 1.0. Förslag på innehåll och tillämpning för en samverkande e-förvaltning. (Hämtad 2015-10-01)

Edvinsson, H, 2009: Verksamhetsarkitektur på IRMs sätt! Hämtad 2015-09-14

European Commission (DG CONNECT): Promoting a dynamic Public Sector Information (PSI) and Open Data re-use market across the European Union. Hämtad 2015-08-15

EU 2014: Delivering the European Advantage? ‘How European governments can and should benefit from innovative public services’. A study prepared Delivering the European Advantage? Hämtad 2015-10-12

IASA 2012: IT-relaterade arkitektroller i Sverige.

Ledningssystem för informationssäkerhet i hälso- och sjukvården baserat på ISO/IEC 27002.

Myndigheten för Samhällsskydd och beredskap, 2009: Föreskrifter och allmänna råd om statliga myndigheters informationssäkerhet (MSBFS 2009:10)

Regeringen, Näringsdepartementet 2013: Regleringsbrev för budgetåret 2014 avseende Trafikverket inom utgiftsområde 22 Kommunikationer.

Regeringskansliet; www.regeringen.se (14-05-26): De transportpolitiska målen

Riksarkivet, RA-FS 2009:1 Riksarkivets föreskrifter och allmänna råd om elektroniska handlingar (upptagningar för automatiserad behandling);

RAFS 2008:4 Föreskrifter om ändring i Riksarkivets föreskrifter och allmänna råd (RA-FS 1991:1) om arkiv hos statliga myndigheter

SIS, Swedish Standards Institute, ISO 15489-1 Information och dokumentation – records management.

SIS, Swedish Standards Institute, ISO 30300 Information och dokumentation - Ledningssystem för verksamhetsinformation.

TOGAF 2015: http://www.opengroup.org/

Trafikverkets strategiska utmaningar 2010 https://online4.ineko.se/online/download.aspx?id=44430

Trafikverket, Riktlinje Informationssäkerhet i Trafikverket TDKOK 2011:175

Trafikverkets metod för informationssäkerhetsanalys; TDKOK 2011:198

Trafikverket, 2013: Informationsklassningsmodell, TDKOK 2013:0261

Trafikverket, 2013: Trafikverkets IT-strategi.

Trafikverket, 2014: Ansvar för förvaltning och leveranser av information. TDKOK 2014:0170,

Trafikverket (2014), Omvärldsanalys 2014, Digitalisering Trafikverket,

Trafikverket 2015: Neldemo Ann-Kristin presentation Trafikverket 2015-03-19

Upward, F (2005). The records Continuum. i McKemmish, Piggott, Reed & Upward (Eds), Archives: Recordkeeping in Society, s. 197-222, Wagga wagga NSW

Sammon et al., 2012: samt http://en.wikipedia.org/wiki/Master_data#See_also

Trafikverket, Riktlinje Informationssäkerhet i Trafikverket TDOK 2011:175

Trafikverkets metod för informationssäkerhetsanalys; TDOK 2011:198

Trafikverket, Informationsklassningsmodell, TDOK 2013:0261.

Trafikverket, 2014: Ansvar för förvaltning och leverans av information. TDOK 2014:0170

Trafikverket, 2013. Informationsklassningsmodell, TDOK 2013:0261

F. Upward, (2005). The records Continuum. i McKemmish, Piggott, Reed & Upward (Eds), Archives: Recordkeeping in Society, s. 197-222, Wagga wagga NSW

Örebro kommun, 2015: IT-Verksamhet Slutrapport. Hämtad 2015-09-15